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1 Executive Summary 

Task T3.1 - Dynamic simulation architectures is part of WP3 – Simulation and Optimisation Enablers and 

devoted to the developments of the dynamic simulation module (a sample E-DYCE-ready simulation 

platform). Deliverable D3.1 - Dynamic simulation platform includes the results of the T3.1 works defining 

the above-mentioned sample platform, based on the adaptation of the POLITO under-development tool 

PREDYCE – Python semi-Realtime Energy DYnamics and Climate Evaluation – that includes: i) input module 

to modify input files to run EnergyPlus simulations, ii) a running module to automatically perform 

simulations, iii) an output analyser module devoted to read simulation (or other sources, like monitored 

data) outputs and iv) allows to process them including calculations of specific KPIs. D3.1 includes the 

usability of a tool based on a python library and associated designs of platform able to be interrelated 

with the E-DYCE middleware to run simulations and retrieve outputs according to different scenarios of 

usage. D3.1 is strictly correlated to works in T3.2 - Free running modes, being D3.2 descripting extra 

functionalities of the sample developed simulation platform including free-running extra actions and KPIs 

and detailing additional scenarios of usage of the PREDYCE tool, like performance gap, that is in line with 

GA descriptions. The above mentioned KPIs allow to define the KPIs families identified in the DEPC 

protocol – see D2.4.  

The D3.1 report describes the adopted approach to define a sample E-DYCE compatible dynamic 

simulation platform and details the-DYCE devoted actions included in the PREDYCE tool development. 

Additionally, a RestApi developed to run simulations is also developed and is accessible by following 

instructions given in this report. The latter runs a sensitivity analysis scenario giving the needed input files 

and retrieving the required KPIs. E-DYCE. Specific objectives and the structure of this report is detailed in 

the following Section 2, while the deliverable also includes sample applications to show the potential 

functionalities of the sample developed simulation platform.  
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2 Deliverable objective and structure  

In line with GA, the main objective of task T3.2 is the development of the infrastructure of the dynamic 

simulation platform, allowing to integrate input parameters to further run energy dynamic simulation 

tools. It is here presented a methodological example of a dynamic simulation platform integrating the E-

DYCE approach. This sample uses the  EnergyPlus engine (DOE and NREL, 2020) and  the simulation 

platform manager PREDYCE – Python semi-Realtime Energy DYnamics and Climate Evaluation –, a new 

under-development Python tool by POLITO. PREDYCE implementation includes different development 

actions. In particular, D3.1 and D3.2 refer to the E-DYCE correlated development parts, which are referred 

as ‘DYCE’ development action. In particular, the ‘DYCE’ action includes base tool architecture and 

organisation. EnergyPlus is one of the most diffused and recognized simulation engines, nevertheless, the 

described in this report simulation platform approach is open to be applied to different dynamic 

simulation tools, including future ones, by developing simple correlated interfaces able to connect 

simulation engines/methodologies with the same input lists – see also E-DYCE WP2 outcomes – and the 

same structure to produce output results.  

The tool developed by POLITO is able in managing basic EnergyPlus input files (with simplified HVAC 

definition) produced with different existing EnergyPlus interfaces, such as OpenStudio (NREL et al., 2021), 

Honeybee (Roudsari, 2013), an OpenStudio-based Grasshopper interface, DesignBuilder (DesignBuilder 

Software, 2020), and potentially others to allow neutral application scenarios. Graphical interfaces are 

not currently integrated in the loop, while the EnergyPlus version supported by the developed library is 

v8.x (tested on v8.9) assuming the correlated IDD file. The dynamic EnergyPlus integration module is 

written in Python language supporting the following issues: 

- Manage an input module to compile/modify EnergyPlus input data files (IDF) to run simulations 

by integrating existing and new wheels and interfaces. 

- Define a running module to automatically perform simulations. 

- Define an output module to read simulation outputs, store data and process them to: i.) retrieve 

feed-back information for new input compiling; ii.) generate data for E-DYCE WP4 integration; iii.) 

calculate needed KPIs; iv.) include incertitude in simulations by defining variation domains of 

specific variable, supporting sensitivity analyses.  

The deliverable is organized as follows. Firstly, the general structure of the E-DYCE simulation platform is 

shortly described – see Section 3. Secondly, the under-development tool PREDYCE is introduced and the 

description of E-DYCE main correlated functionalities is given detailing the developed platform application 

– see Section 4. Finally, sample application scenarios are shortly detailed to illustrate potential usages of 

the ’DYCE‘-driven tool functionalities – see Section 5. It is important to note that the dynamic platform 

here developed is a sample application (in beta-version), leaving open the future possibility to develop 

additional platforms based on different simulation engines. The E-DYCE DEPC protocol and the basic 

methodological approach used for the dynamic energy platform is neutral and replicable.  

NOTE: Task 3.1 is strictly correlated with Task T3.2 about the free-running modes and, therefore, main 

free-running E-DYCE correlated functionalities of PREDYCE are described in E-DYCE D3.2 together with 

specific sample applications.  



893945 – E-DYCE - H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-EE-2019                                                      Dissemination level: PU 

Page 7 of 50 

3 General structure of E-DYCE simulation platform(s) 

It is well known that energy simulation is an essential support to building correlated actions and is 

connected to the whole life of a building, from preliminary design till building operation and end of life. 

Particularly, hourly dynamic simulations performed both at early design and operational stages allow to 

support building energy performance correlated choices and/or evaluations and can lead to the definition 

of a new technology-neutral dynamic labelling (DEPC), including valorisation of the free-running potential 

of buildings. In line with the E-DYCE rationale reported in D1.2 (EDYCE, 2021), the E-DYCE DEPC approach 

is based on a three-stage process supporting a first stage devoted to ‘inputs and data collection’ – see 

WP2 deliverables – followed by a second stage focussed on ‘monitoring and implementation of dynamic 

certification methodology’ – see D2.4 and WP3 deliverables about dynamic simulations. Finally, the third 

step includes ‘user feedback and actuation’ including renovation roadmaps. This deliverable (D3.1) is 

mainly correlated to the second step, being devoted to introduce the developed approach to manage 

dynamic simulation tools and to calculate from given inputs required KPIs (Key Performance Indicators).  

 

Figure 1 Sample sketch of an E-DYCE simulation platform 

The general structure of an E-DYCE simulation platform is sketched in Figure 1. Assuming a series of 

minimal inputs needed to run dynamic simulations – see also E-DYCE WP2 results –, it is possible to 

develop a coding-interpreting interface connecting project stored inputs with the selected simulation 

engine to perform model simulation runs and retrieve simulation results. Inputs are expected to include, 

on the one side, geometrical data and, on the other side, building physics, technological, and operational 

aspects correlated to the given building – or thermal zone(s) – to perform building simulations (e.g., set 

points, HVAC scheduling, activities, envelope thermal characteristics, …). Additionally, weather data – 

typical or monitored (historical, real-time, forecasted) – need to be also collected for simulation purposes. 

Input data may refer to different backgrounds, including standard conditions – e.g., profiles and data from 

EN 16798-1:2019 –, standard-adapted conditions – including national or regional adaptations and/or 

inputs from the E-DYCE inspection plan (see E-DYCE D2.2)–, and/or operational conditions. When a 
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request is sent to the simulation platform, including basic and interpreted simulation inputs, the latter 

will run, according to simulation platform running scenario, the simulation engine will collect simulation 

outputs. Outputs will be elaborated for KPIs definition and, according to the scenario (e.g., sensitivity 

analyses, simulation/monitored data comparison, etc.), results will be sent in a structured form to the 

enquiring actor (e.g., another E-DYCE platform agent). 

According to the specific adopted simulation engine, inputs need to be elaborated and interpreted to feed 

simulation running requests. For example, EnergyPlus, which is the reference engine adopted in the 

developed simulation platform, requires two main input files: an IDF that includes structured information 

regarding geometries and all needed information about simulation (input data and required outputs), and 

a weather file in EPW format. In this example, it is possible to consider producing a basic input data file 

(IDF) to simulate a building using an existing EnergyPlus CAD interface allowing the simulation platform 

to modify this file further automatically via devoted coding definitions able to interpret specific inputs 

and/or input change requests. Similarly, the weather simulation file needs to be produced according to 

the specific simulation engine requirements using as initial inputs data from the identified weather data 

source. Hence, the simulation platform needs to interpret specific inputs and simulation requests to 

manage them supporting the generation of simulation outputs to be further elaborated into KPIs for 

sending back results to requiring users. Potential managing scenarios may be defined to automatically 

orient the simulation platform to perform for example sensitivity analyses when changing inputs (e.g., 

listed, range-varying, or random values) or to elaborate a comparison under real weather data of building 

monitored and simulated conditions expressed via KPIs.  

Platform functional requirements are hence neutral in respect to the assumed simulation engine, while 

different simulation platforms (or internal simulation managing input/output modules) may be developed 

to support the calculation of needed results when different engines are adopted. In line with works 

performed in E-DYCE WP2, it is possible to define a list of inputs to be retrieved, e.g., by the E-DYCE 

inspection plan, able to feed simulation models for different existing tools, such as EnergyPlus via 

DesignBuilder or OpenStudio, Dial+, Termolog Dinamic module, etc. Roughly speaking, it is possible, when 

required KPIs calculation methods are defined – see also D2.4 and D1.2 –, to develop specific codes (e.g., 

python libraries) able to interpret different simulation engine inputs and to modify them according to 

simulation platform requests to perform simulation scenarios and retrieve comparable results to further 

feed E-DYCE functionalities by different dynamic simulation engines. Similarly, a potential software-house 

currently selling energy labelling software, may decide to include both E-DYCE simulation platform 

requirements and E-DYCE middleware requirements in the same tool to develop a comparable, even if 

specific, software and eventually choose what to include among different E-DYCE scenarios and services.   

To demonstrate E-DYCE simulation functionalities, a sample simulation platform is developed, based on 

the above mentioned PREDYCE tool under-development by POLITO, adopting EnergyPlus as the dynamic 

simulation engine. Nevertheless, in Section 3.1 a comparison is provided between EnergyPlus and DIAL+, 

i.e., another dynamic simulation tool compatible with ISO and EN Standards, in order to demonstrate that 

the proposed approach is replicable in terms of results. Furthermore, even if in this deliverable a specific 

dynamic simulation platform is developed, the possibility to adopt different tools remain open allowing 

in future to adapt or develop other simulation platforms compatible with the E-DYCE middleware and 

PDEC protocol. 
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3.1 Investigating the applicability of DIAL+ in the E-Dyce framework1 

3.1.1 Introduction 

Developed by Estia SA, DIAL+ is a building energy modeling software that is able to simulate daylight, 

natural ventilation airflows, and thermal behavior dynamically. Its ability to calculate all these parameters 

accurately was validated with the standards ISO 13791, EN 15255, and EN 15265.  

In the framework of the E-DYCE project, it was investigated if the results produced by the DIAL+ 

simulations are compared with the other used simulation tool (EnergyPlus) to verify the coherence 

between the used tools. It is accepted in the literature that the results coming from different tools may 

differ, and sometimes significantly (Vadiee et al., 2019). To investigate if these two tools are comparable 

and if both can work for the E-Dyce project, several identical simulation models of DIAL+ and EnergyPlus 

were built and simulated to verify the coherence of their outputs.     

3.1.2 Methods 

The geometry of the models was selected to be identical with the geometry proposed by EN 15265 (2007) 

standard, which provides the specifications for the validation of building energy simulation tools. So, 

according to the above-mentioned standard, the room’s internal dimensions were 3.6 x 5.5 x 2.8 m, with 

the window oriented towards the west. For the present analysis, it was considered that all the surfaces 

are in contact with the external air. A visual representation of the model geometry is presented in Fig. 2.  

 

Figure 2 Visualisation of model’s geometry in DIAL+ (left) and EnergyPlus (right) simulation models 

To investigate how the two different software calculate the thermal loads and the indoor environmental 

conditions, eight different scenarios were simulated, including models with high and low thermal mass, 

with and without external fenestration, and with and without an HVAC system. The different simulated 

models with their abbreviations are presented in Table 1. The simulations were run for a typical 

meteorological year using the same weather file in an EPW format, as both software can read it as an 

input.  

 

 

1 Section 3.1 is developed by ESTIA 
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Table 1 List of the simulated scenarios 

Thermal mass Fenestration HVAC system Model’s abbreviation  

High thermal mass 

With window 
With HVAC system H_WW_C 

Without HVAC system H_WW_FF 

Without window 
With HVAC system H_NW_C 

Without HVAC system H_NW_FF 

Low thermal mass 

With window 
With HVAC system L_WW_C 

Without HVAC system L_WW_FF 

Without window 
With HVAC system L_NW_C 

Without HVAC system L_NW_FF 

The walls, roof, and floor of the high thermal mass model were constructed from a 15 cm concrete layer 

with the insulation located in the outside layer. In the lightweight model, the walls, roof, and floor had a 

thin layer of plaster/cement followed by a layer of insulation. In the models with fenestration, the window 

had a total area of 5.04 m2 (Aw = 5.04 m2), and it was west-oriented. The total frame area was equal to 1 

m2 (Af = 1 m2), and the glass area was equal to 4.04 m2 (Ag = 4.04 m2). The U-Factor of the window (both 

for glass and frame) was equal to 1.1 W/m2K, with a heat gain coefficient equal to 0.4 (-).  

Given that the two software have different calculation engines and use different calculation equations, a 

tuning of the DIAL+ thermal parameters was necessary in order for the results to be coherent enough. 

More specifically, the convection coefficients of outdoor surfaces were necessary to be modified to fit the 

specific weather file. This process was not necessary for EnergyPlus as these coefficients are auto-

calculated. In addition, the outdoor coefficients of absorption of walls and roof were modified in order 

for the DIAL+ surfaces to match with the surfaces introduced in EnergyPlus. Lastly, for this tuning process, 

a modification of the correction coefficients of the heat density flow between the outside surfaces and 

the sky was needed in order to calibrate the models. These modifications can be done by using the 

“Project/Thermal preferences” tab in the menu of DIAL+, as presented in Figure 3.  

The selection of the HVAC system was made accordingly in the models where the space was conditioned. 

The ideal air load HVAC system was selected for the EnergyPlus, and a fan coil HVAC system was set for 

DIAL+. The purpose of this selection was to minimize possible errors that come from the definition of 

more complex HVAC systems (heated slabs, radiant surfaces, etc.).  

The results were compared regarding both the heating/cooling loads and other KPIs of the E-Dyce 

method, such as the indoor temperatures and the free-running potential. More specifically, in this study, 

the average and minimum/maximum temperatures, as well as the free-running hours (indoor 

temperature between 20 and 26 °C) of the free-floating models, were compared. 
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Figure 3 The thermal preferences menu in DIAL+ software  

3.1.3 Results and conclusions 

The results indicated that the energy need for heating given by the two software is very similar. According 

to the scenario, the difference is between 3% and 9%. As presented in Figure 4, when the model didn’t 

have a window, the differences between the two software are less significant compared to the models 

with the window, where the differences are close to 9%.   

 

Figure 4 Total heating demand of the models with the HVAC system 

 

As presented in Figure 5, the energy demand for cooling given by the two software is very similar. The 

differences are between 0% and 7.8%. Again the highest difference was observed in the model that had 

a window.  
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Figure 5 Total heating demand of the models with the HVAC system 

Regarding the indoor temperatures generated by the two software for the free-floating models, the 

differences were equally not of high significance, as they are presented in Figure 6. These differences 

varied between 0.03°C and 0.72°C, with the highest difference being in the minimum temperature of the 

lightweight model with the window.   

 

Figure 6 Maximum, minimum, and average indoor air temperatures given by the EnergyPlus and DIAL+ software 

for the free-floating models 

Furthermore, as one of the major KPIs for the E-Dyce methods is the free-running potential of the 

buildings, this last was also calculated for the free-floating models. The results presented in Figure 7 

indicated that the differences between EnergyPlus and DIAL+ were consistently below 10%.  
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Figure 7 Percentage of free-running potential given by the EnergyPlus and DIAL+ software for the free-floating 

models 

In the ANNEX are presented more detailed results of all the simulations run.  

3.1.4 Conclusions 

This study examined if the DIAL+ software can be used in the E-Dyce methodology and if the results it 

generates are comparable with the results delivered by EnergyPlus. The results revealed that the 

differences in calculating heating/cooling loads were not higher than the differences existing between all 

the well-known simulation tools. In addition, it can accurately calculate the free-running potential of the 

buildings. It is thus concluded that DIAL+ software can equally be used as a simulation platform for the 

simulations of the E-Dyce methodology. 

Annex A includes detailed results of this analysis.  
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4 The PREDYCE tool – ‘DYCE’ development action 

There are several available applications able to perform dynamic energy simulations for research and 

professional purposes, e.g., TRNSYS, Dial+, ESP-r, or IDA, each working differently concerning internal 

structure and computation workflow, but also input/output files format and generation. Among these 

energy simulation engines, EnergyPlus, which is funded by the U.S. Department of Energy (DOE), is 

currently one of the most diffused and recognized, at least in the academic world. Considering EnergyPlus 

structure and diffusion, but also its flexibility and simulation possibilities, it is adopted as dynamic 

simulation engine for the specific E-DYCE simulation platform here developed and proposed as sample. 

Particularly, inside EnergyPlus software, input data files (IDFs) are used as input to provide all information 

about building model geometry and activities. These files are text files based on a dictionary-like structure 

described in detail in the IDD file associated to each software release. Moreover, EPW files are used in 

input to contain weather information for an annual period (with possible variations). Both file formats 

have been defined together with EnergyPlus itself and despite they are quite well known they have almost 

no use outside the software. 

EnergyPlus software can execute performance-driven energy and comfort analyses and/or optimization 

tasks with the help of graphical interfaces or coding tools that allow to integrate a single dynamic energy 

simulation in a more structured workflow including input editing and output analyses. Several graphical 

interfaces, periodically updated and proposing multiple functionalities, have been developed to support 

professionals during EnergyPlus usage; among them it is possible to mention: 

• OpenStudio: open-source software development kit, which is also funded by DOE, containing a 

suite of applications allowing to create and edit building models, but also run parametric 

simulations and perform optimization tasks with EnergyPlus.  

• DesignBuilder: commercial software able to perform EnergyPlus simulations including several 

additional professional utilities (e.g., CFD analyses). It recently allows also to perform simple 

parametric analyses but considering a limited number of parameters.  

Graphical interfaces are currently the only working method to create an initial building model 

(exportable in IDF format) with complete information about all building activities (e.g., occupancy, 

schedules, setpoints) and complex/realistic geometry, since the structure of an IDF is quite complex 

and features many interconnected objects. Also, in order to actuate deep changes in building 

geometry (e.g., remove a wall or add a floor inside building renovation projects) in a realistic way, it 

is necessary to make use of these interfaces, while coding tools can be used for simpler geometry 

modifications. 

Focusing on coding tools, the interest to develop EnergyPlus based libraries and applications to 

perform optimizations and other building-oriented tasks is underlined in many recent publications. 

Among existing projects, it is possible to mention in particular: 

• Eppy: Python library which allows to easily edit the EnergyPlus input data files (IDFs) using a 

dictionary-based approach based on the input data dictionary (IDD) file provided by EnergyPlus 

itself; this makes the tool work with any EnergyPlus version. 
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• jEPlus: Parametric tool which allows to run multiple parallel simulations of the same building by 

automatically change parameters of an IDF. 

• BESOS: Python library and JupyterHub platform which allows to create building optimization tasks 

by simple coding. It exploits the Eppy library to perform parametric IDF editing, and genetic or 

optimization algorithms (e.g., from Platypus Python library) to perform building optimization 

during the parametric analysis. 

However, despite the numerous existing projects, a way to perform complex IDF editing tasks without 

the need to use a graphical interface like DesignBuilder or OpenStudio is still missing; instead, existing 

coding tools usually require a certain knowledge in scripting, or at least a deep knowledge of the IDF 

structure. Usually, this results in long, time-wasting manual operations to create a certain number of 

building models, making it difficult to parametrically extend the research to many building 

characteristics and climates. In addition, the required high-expertise level about the IDF structure 

makes the applicability of the mentioned tools very correlated to a deep knowledge of the EnergyPlus 

engine. The need of a robust simulation platform able to integrate dynamic functions, including the 

ones required by the E-DYCE DEPC approach, and the generation of different modifications in building 

specific models to calculate E-DYCE KPIs led to the development of a new tool based on readily 

available dynamic simulation software and open to future integration of multi-simulation engines. 

This new tool, on a part of which E-DYCE bases, is called PREDYCE and it is described in paragraph 4.1. 

Focussing on the ‘DYCE’ correlated development actions, its main functionalities and basic scenario 

are in the present deliverable D3.1, while additional E-DYCE scenarios and usages, concerning free-

running buildings and comparisons between simulated and monitored data, are described in the 

correlated deliverable D3.2. 

4.1 PREDYCE general description 

PREDYCE (Python semi-Realtime Energy DYnamics and Climate Evaluation) is a Python library which can 

be used to perform parallel runs of EnergyPlus simulations, automatic editing of IDFs (and also EPW files), 

and KPIs computation according to E-DYCE project requests and needs. Each module is independent from 

the others, such that for example KPIs calculator module can accept in input both results from simulation 

and structured monitored data. 

The provisioned set of possible Python actions, combined with the integrated EnergyPlus launcher, can 

help in performing different tasks like sensitivity analyses, retrofitting suggestions or model calibration in 

an automatic or semi-automatic way. This combination of auto-editing and auto-running makes it possible 

to perform such complex tasks and output analyses without the need of writing lines of code or requiring 

any coding knowledge. So, taking benefits from all PREDYCE functionalities the different tasks can be 

organized in separate scripts which take as input and give as output files that are structured and organized 

in the same way. All PREDYCE scripts can be easily executed from command line, or even through a remote 

session with the help of a dedicated REST API, by providing the required input files as arguments. In the 

future each script could be treated as a pre-built scenario of usage, and automatically launched from a 

more general script (like an application) by just specifying the name of the scenario. Moreover, the tool 

can also work as a library so that expert users can exploit the already present classes and methods to 

create different codes with their own approach and expand the potentialities of the tool. This flexibility 

of usage, offered by PREDYCE modular structure, allows to give an answer to different E-DYCE needs: the 

organization in structured task-oriented scripts allows an easy server-to-server communication with the 
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FUSIX platform that acts as project middleware – see short initial description in D1.2 and works of WP4 

and Task 3.3, while its organization as a library allows for high flexibility and freedom of development 

inside POLITO research group, making it possible to develop new scenarios of usage and testing different 

methodological approaches in order to further build final outputs for the project and support demo 

applications and tests including T4.3 (ENEA living lab) and demos’ correlated tasks in WP5.   

The input/output workflow of a generic PREDYCE scenario of use is described in Figure 8. At present, in 

order to run a PREDYCE script from command line, EnergyPlus command line launch structure made of 

options and an IDF model was maintained (e.g., -w option is followed by the EPW weather file, -i by the 

IDD version) such easing the usage of the tool for users already used to EnergyPlus software.  

The main mandatory input files for any generic task are:  

• the building model in IDF format,  

• the weather file in EPW format, 

• a JSON file, structured to contain all user requests (e.g., KPIs to be computed, parameters to be 

modified, run period).  

While the main outputs will result in: 

• a CSV file named data_res.csv containing aggregated KPIs in the considered run period for all the 

performed simulations, 

• for each performed simulation, a folder containing timeseries KPIs (data_res_timeseries.csv) and 

plots is also generated. 

 

Figure 8 PREDYCE I/O 

As already introduced, both input and database JSON files are used inside the tool to define actions and 

KPIs to be performed and retrieved during a pool of simulations and to store information necessary to 

modify IDFs in a dictionary form (e.g., materials composition, schedules, construction elements). 

A standard PREDYCE JSON input file is structured as shown in Figure 9: the building name is the name of 

the main block of the IDF; it is utilized by the tool to know which zone elements to edit and perform 

calculations on. The preliminary actions are the actions which are executed only once before running the 

simulations for the parametric analyses: all simulated buildings have in common the same modifications 

listed in the preliminary action section. The actions are the parametric modifications that have to be 

applied to the building; all actions and their parameters are combined together to perform a set of 

simulations: each simulation contains a specific variation (combination of actions) of the initial building. 

The kpi section includes the final indicators that are computed at the end of each simulation. Other keys 
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in the input JSON file can be used for example to define a time period shorter than the run period on 

which to compute KPIs (to exclude the warmup period), or to define different aggregations of thermal 

zones on which computing the same KPIs. The scenario key can be used in the future to understand the 

requested macro task and select inside a general application which script to run. 

 

Figure 9 Example of input JSON file for PREDYCE 

PREDYCE also features two internal databases, Figure 10, including default elements and descriptions. 

Particularly, the database of actions describes default behaviours of any PREDYCE method, e.g., the name 

of default blind element to be added when the “add exterior blind” function is called and contains text 

description of the function. This database in not fully implemented in the current PREDYCE version, but it 

is available as a concept since this approach may simplify further development of a simple GUI (graphical 

user interface), allowing for automatic creation of input JSON files inside the interface. Its implementation 

was inspired by the concept of measures in OpenStudio. The database of objects contains dictionary 

structures of basic IDF objects which are retrieved by the IDF editing functions, e.g., the characteristic of 

a blind element given its name. This kind of database is fundamental to any EnergyPlus interface (e.g., 

both DesignBuilder and OpenStudio have a database structured like this), since any IDF editing action 

must follow rules for object structure contained in the IDD file associated to each software release. 

 

Figure 10 Example of PREDYCE databases content 
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4.2 PREDYCE modules 

A general scheme of PREDYCE library architecture is shown in Figure 11. The tool bases on three main 

modules which are designed to work together but can be also used independently:  i. the EnergyPlus input 

data file editor, which allows to act on the building model both on building structure and activities, ii. the 

KPIs calculator, which contains a collection of methods to compute several KPIs according to European 

more recent norms, and iii. the runner module, which allows to automatically manage batch of multiple 

parallel simulations. Moreover, additional extra-modules support other specific functionalities, e.g., to 

compile weather input files (EPW) from different data sources (monitored data from weather stations, 

forecasted data, etc.). Then, functionalities of the different modules are combined in task-oriented scripts 

corresponding to different scenarios of usage. 

 

Figure 11 Overview of PREDYCE modular structure 

In the following the steps of a generic scenario application workflow are reported completely, starting 

from building model creation to post-analysis, highlighting the automated and not automated processes: 

Not automated steps (1) Create a base building model for EnergyPlus (IDF) through any interface able 

to export the IDF format, according to suggestions about model input 

definition defined in WP2, following standards and standard modified data 

after the inspection plan. Such models can then be stored inside middleware 

platform for reuse inside E-DYCE project. 

(2) Compile manually an input JSON file, defining actions and parameters 

ranges then used to modify the base of the building model. Some pre-

defined JSON file to run recurrent scenarios for demos are expected to be 

stored directly in the project middleware. 

(3) Launch script from command line or remotely through server-to-server REST 

API (in this case the launch can be automatic but requires some scripting 

competences) or basic web interface, specifying as arguments at least the 

building model, the weather file, and the input JSON file. 
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Automated steps (4) Create a structured table containing permutation of parameters to be 

applied on the base building model: each table line corresponds to a 

simulation run and each column to building characteristics, Figure 12. 

(5) Run N simulations in parallel according to CPU characteristics. Rows of the 

previously built table contain information used for the creation of the N 

different IDFs. Then, after each simulation run, KPIs are computed and plots 

generated. Both aggregated and timeseries results are stored. 

(6) Create lightweight (limiting required storage) CSV files containing results for 

all simulations. 

Not automated step (7) Perform post-analysis (e.g., finding the optimum) and plots generation of 

multi-simulation results. 

Particularly, steps (2) and (3) have the potentialities to be further automatized through the development 

of a simple GUI (graphical user interface) thanks to the adopted JSON approach, but this work is not 

expected for the E-DYCE project supporting potential future expansions. Furthermore, step (7) could be 

integrated in the automated process by a future development of a post-process graph production module 

and introducing optimization algorithms in the loop. User interfaces and graphical restitutions are 

expected to be retrieved by the E-DYCE middleware and for this reason they are not part of the DYCE 

action in the PREDYCE tool development. 

4.2.1 IDF editor 

The IDF editor module contains a collection of methods able to modify EnergyPlus building models for 

different purposes. Such models are handled thanks to Eppy scripting language. The complexity of the 

actions that can be performed in order to modify the building model exclusively depends on how the 

different elements of the file are connected together and interpreted by EnergyPlus during a simulation 

run; for this reason, a manual editing of the input file can be performed only by an expert user knowing 

well the internal structure of the file and interconnections occurring during a simulation. The editor 

module instead offers a way to perform some of such complex actions by means of Python methods easily 

callable from a custom script, simplifying the editing procedure. 

Since IDF structure depends on the EnergyPlus version release, the IDF editor methods were developed 

having in mind a specific software version, precisely 8.9. So, in order to be compatible with more recent 

software releases some functions may require a deep update and an automatic way to choose among 

different action versions based on the specific release should be somehow organized if there will be 

interest in managing this problem. This is currently one of the main limitations of the developed platform. 

4.2.2 Runner 

The runner module is a script including a Python class that can be instantiated and used by a user or by 

other PREDYCE modules to perform multiple simulations and analyses at once. The runner is in charge of 

creating a pool of simulations that is then executed in an asynchronous way by multiple instances of 

EnergyPlus on the same machine according to the number of cores of the current CPU (this can be both 

specified by the user or defined automatically in the process); this pool of simulations can be a simple 
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combination of all possible actions described in the input JSON file by the user. Also, being the proposed 

tool conceived to be run on both personal computers and servers this feature allows for massive 

simulations or the future development of services. 

As described in Figure 12, each simulation is executed on a building which has been modified by one or 

more actions as stated in the input file. After each simulation run, all KPIs are calculated and appended in 

the final main output table. In the end, a final data frame of all simulated buildings is saved on a CSV file 

to be further analysed through cross-simulation considerations. 

 

Figure 12 Runner module workflow and creation of aggregated output 

Besides aggregated outputs, the runner module also creates a subfolder for each simulation containing 

timeseries results and plots (the match is created by naming the folder with the row index in aggregated 

results corresponding to the specific run), Figure 13. This is done to keep in memory more detailed 

information about each simulation and allowing a much lighter storage usage rather than keeping all 

EnergyPlus output files for further analysis. Timeseries results are by default saved with hourly resolution, 

but on request also other time aggregations are possible. Plots generation is instead controlled by a 

Boolean flag which is passed to KPI methods. 

 

Figure 13 Simulation-based outputs  
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4.2.3 KPIs calculator 

The KPIs calculator module is able to perform calculations, analyses and graph plots by accessing 

EnergyPlus output files. Such actions can be automatically performed after each simulation, called by the 

runner module, or manually executed by a custom Python script. The analyses usually consist in 

resampling output data and applying formulas to compute indicators based on European standards. Some 

calculations can also include graphs that can be saved in a subfolder structure to be associated to single 

simulations and visualized when needed. In the common case in which KPIs methods are called by the 

runner module, all results are aggregated together in the final CSV file in which each row represents a 

simulation and each column an output (including EnergyPlus base outputs if needed or a computed KPI).  

Figure 14 shows how this module is built: inside KPIs calculator module there are two main classes 

containing the same methods, one is working on EnergyPlus outputs, while the other both on structured 

monitored data and on simulation results (or also from data arriving from different sources like other 

energy simulation tools as Dial+, if going through an intermediate step allowing for structure and 

nomenclature standardization). Hence, the module may treat simulated and monitored data considering 

both buildings and climate issues. The main goal of EnergyPlusKPI class is to read EnergyPlus outputs 

(mainly eplusout.csv) and prepare them (e.g., standardizing nomenclature, organizing average values on 

thermal zones, changing unit of measure) to actual KPI computation made by parent KPI class. This 

structure made of parent and child classes allows for very high flexibility of data sources, just requiring a 

common variable nomenclature, for example, as shown in Figure 14, “T_db_o[C]” is the variable name for 

the outdoor dry-bulb temperature in degree Celsius – see also D3.2 for extra information. Among KPIs, 

some could return a number, while others could return a dictionary of values (e.g., describing a 

distribution) allowing for more complex post-analyses. Moreover, timeseries KPIs return a table with 

hourly associated values. 

 

Figure 14 Example of KPIs calculator module structure 

PREDYCE is organized in a way allowing to potentially integrate and expand the list of retrievable KPIs in 

order to be adapted to further project requests and to extra functionalities in order to allow future 

integrations based on results of other project WPs and tasks.  
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4.3 Current actions 

PREDYCE is under implementation thanks to two main developing actions: i. the “DYCE” action, funded by 

the E-DYCE project, and ii. the “PRE” action. The “PRE” development includes a set of extra scripting 

actions and uses which are not described in the following . In the following paragraphs, main PREDYCE 

methods useful for E-DYCE objectives are listed and briefly analysed, considering both IDF editing actions 

and KPIs computation. 

4.3.1 IDF actions 

In this section some of the major IDF editing functions included in PREDYCE are listed. All actions require 

as input the IDF object (inherited from a Eppy class) and some parameters which can be mandatory or 

optional. The filter_by parameter, which is sometimes featured in the IDF editor actions, is useful to apply 

the modifications only to specific zones of the building. The actions usually feature a void return, meaning 

that the IDF object is edited by reference and not returned as a copy. 

Several implemented functions regard the addition of some elements to the IDF: the only required 

parameters are the names of the objects that must be added which in turn are taken from the internal 

database.  

A first set of actions includes modification to the envelope, for example the addition of insulation to the 

walls, which can be done internally, externally or in the cavity via different functions. The new insulating 

materials are passed by their names since the complete objects are included in the internal database. 

predyce.idf_editor.add_external_insulation_walls(idf, ins_data=None, filter_by='', **fields)  

Add external insulation layer and plaster layer on external walls. Since layers are added externally internal 

building area and volume are not impacted. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• ins_data (list of two string elements, optional) – Construction objects list (insulation material 

and plaster), defaults to None 

• filter_by (str, optional) – Filter zones by name. Can be the block name or specific zone name, 

defaults to “” 

• fields – Additional fields to be set, passed as keyword arguments 

Example 

add_external_insulation_walls( 
    idf, 
    ins_data=[ 
        [ 
            "extruded polystyrene panel XPS 35 kg/m3 15 mm", 
            "plaster lime and gypsum 15 mm", 
        ] 
    ], 
    filter_by="kitchen", 
    Conductivity=0.4, 
)  
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The addition of insulation can also be performed on the floors both internally and externally, in an 

analogue way, and also on flat and tilted roofs, depending on the building, both internally or externally. 

predyce.idf_editor.add_external_insulation_floor(idf, ins=None)  

Add insulation on the external layer of all floors in the building. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• ins_name (str, optional) – Name of the insulation which has to be added to the floor, defaults to 

None  

predyce.idf_editor.add_insulation_flat_roof(idf, ins_name=None, sheathing_name=None)  

Add insulation to flat roof, under the sheating layer. 

If no insulation is provided, a default one would be used; if no sheathing layer is provided, the function will 

try to put the insulation under the fibreboard if present or under the asphalt. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• ins_name (str, optional) – Name of the insulation which has to be added to the roof, defaults to 

None 

• sheathing_name (str, optional) – Name of the sheathing layer under which the insulation has to 

be added, defaults to None  

There is the possibility also to substitute the entire window system by changing the glazing type, e.g., 

simple, double or triple glazing with different types of gas. The only requirement is that the new element 

is present in the internal database. 

predyce.idf_editor.change_windows_system(idf, win_type=None) 

Change all Windows and GlazedDoors system with a different construction object. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• win_type (str, optional) – Construction name, defaults to None  

Another type of action regards the modification of the window to wall ratio of the existing windows. There 

changing of the window-to-wall ratio (WWR) can also be made by orientation if a dictionary containing 

pairs of orientations and values is passed to the function. 
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predyce.idf_editor.change_wwr(idf, wwr_value=0.2, wwr_map_value={}) 

Change wwr value for all windows in an IDF object or specify in wwr_map_value dictionary wwr 

corresponding to specific windows orientation. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• wwr_value (float in range [0,1]) – wwr for all windows, if not specified it is 20% 

• wwr_map_value (dict, {int (0,90,180,270): float (in range [0,1])}) – dictionary where each key 

corresponds to a orientation and value to wwr.  

The IDF editor can also edit the HVAC system of the building, for example it is possible to activate or 

deactivate the cooling system. If the building does not have an HVAC system at all, the function will 

automatically add all the necessary HVAC elements to the model by means of another function. 

predyce.idf_editor.activate_cooling(idf, cooling_schedule, cool_sch_name='Cooling SP Sch', cool_avail_name='Cooli
ng Availability Sch', filter_by='')  

Activate cooling on the building. If the building does not have an HVAC system, the entire system is added. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• cooling_schedule (dict) – New schedule for the cooling system. 

• cool_sch_name (str, optional) – Name of the cooling setpoint schedule compact which has to be 

replaced, defaults to “Cooling SP Sch” 

• cool_avail_name (str, optional) – Name of the cooling availability schedule compact which has 

to be replaced, defaults to “Cooling Availability Sch” 

• filter_by (str, optional) – Filter zones by name. Can be the block name or specific zone name, 

defaults to “”, ignored if ach is a dict  

predyce.idf_editor.add_hvac(idf, heating_schedule=None, cooling_schedule=None, filter_by='')  

Add HVAC to a building without HVAC. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• heating_schedule (dict, optional) – Heating schedule, defaults to None 

• cooling_schedule (dict, optional) – Cooling schedule, defaults to None 

• filter_by (str, optional) – Filter zones by name. Can be the block name or specific zone name, 

defaults to “”  

Another set of actions include the possibility to edit specific parameters inside the model, for example it 

is possible to change the setpoints of heating and cooling: in this case the function will edit the 

heating/cooling schedules by identifying and modifying the proper values. 
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predyce.idf_editor.change_setpoint(idf, heat=None, cool=None)  

Change heating and cooling setpoints in the IDF. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• heat (int, optional) – New heating setpoint value, defaults to None 

• cool (int, optional) – New cooling setpoint value, defaults to None  

Another change can be made on the U-factor of the objects: it is possible in fact to edit the R-value of 

walls, pavements, ceilings, roofs and windows. In all cases the function will try to modify the R-value of 

the most insulating element by changing its thickness or substituting the entire system with a simplified 

version with the desired R-value. 

predyce.idf_editor.change_ufactor(idf, ufactor, where='Walls', relative=False)  

Change Ufactor of specified Construction objects to desired value acting on thickness of most insulating layer 

in the construction object. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• ufactor (float) – desired final ufactor value 

• where (string, defaults to "Walls") – where to compute Ufactor, could be “Pavements”, “Walls”, 

“Ceilings”,”Roof” or the name of a specific Construction object  

predyce.idf_editor.change_ufactor_windows(idf, value)  

Set an U-Factor value to all windows of type SimpleGlazingSystem. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• value (float) – New U-Factor value  

When windows are simple glazing, a modification of the solar heat gain coefficient can be performed 

easily. 

predyce.idf_editor.change_shgc(idf, value)  

Set an SHGC (Solar Heat Gain Coefficient) value to all windows of type SimpleGlazingSystem. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• value (float) – New SHGC value  

Some simple modifications which can be easily made by hand are also supported by the tool, for example 

it is possible to change the running period of the simulation or the occupancy of the building by calling a 
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function; regarding the occupancy, it can be set randomly by specifying the minimum and maximum 

values of the random interval. 

predyce.idf_editor.change_runperiod(idf, start, end, fmt='%d-%m')  

Change simulation RunPeriod according to provided dates. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• start (str) – Start date 

• end (str) – End date 

• fmt (str, optional) – Format of the date, defaults to “%d-%m”  

predyce.idf_editor.change_occupancy(idf, value=None, schedule=None, filter_by='', rela-
tive=False, low=0.03, high=0.2, replace=False)  

Change People per Zone Floor Area field with a new value. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• value (float or str, optional) – New base occupancy value; it can be a float number or “random”. 

If set to “random”, minimum and maximum values for the random interval can be provided 

by low and high parameters, defaults to None 

• schedule (dict, optional) – New occupancy schedule, defaults to None 

• filter_by (str, optional) – Filter zone by name. Can be the block name or specific zone name, de-

faults to “” 

• relative (bool, optional) – Specify if new value will be assigned as a percentage increment from 

the old value, defaults to False 

• low (float, optional) – Minimum base occupancy value when “random” is chosen for value pa-

rameter, defaults to 0.03 

• high (float, optional) – Maximum base occupancy value when “random” is chosen for value pa-

rameter, defaults to 0.2 

• replace (bool, optional) – If True, the current schedule is replaced by the new one, defaults 

to False 
Warning 

When replace is set to True, schedule associations are preserved; therefore you might unintentionally modify 

several elements in the model. This happens if the modified schedule is also associated to other element than 

occupancy.  
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4.3.2 KPIs 

Concerning implemented KPIs, here are reported methods belonging to the parent KPI class which 

contains the actual indicators calculation workflows, that can be applied to data originating from any data 

source, while the EnergyPlusKPI class, inheriting from KPI, contains EnergyPlus outputs preprocessing and 

then recalls parent methods. As can be seen in the following, any KPI method requires in input at least a 

data frame containing columns with standardized nomenclature (concept expanded in correlated 

deliverable D3.2), then other parameters that can be mandatory or optional. Consequently, the only 

required step for accepting data from different sources is to standardize them to the proposed table 

format, making the KPIs computation technology neutral and independent from adopted simulation 

engines. 

Methods inside KPI class can be grouped into three macro-groups according to the output type: KPIs 

returning aggregated results for the requested time period in numerical or dictionary form (and eventually 

correlated graphs for further visual analysis); KPIs returning timeseries results, so tables with date/time 

and indicators; KPIs returning only graphs for further visual inspection. Moreover, indicators may be 

grouped in thematic groups, e.g., energy operation KPIs, energy signature of a building (or zone), 

comfort/quality KPIs, free-running KPIs. In the following parts of the technical manual describing some of 

the main KPIs implemented for E-DYCE are reported; then, they are combined inside the scenarios of 

usage in order to perform a more complex and complete building analysis.  

Concerning consumption related KPIs, in accordance with WP2 outcomes, the main indicators are final 

(f_Q_x) and primary (Q_x) energy needs for heating, cooling, lighting, etc. Since EnergyPlus outputs for 

consumption are expressed in form of net energy needs, so before any losses occurrence, there was the 

need of considering losses’ correction factors inside the KPIs computation. Moreover, usually also 

consumption monitoring may be performed at least before the occurrence of generator losses, e.g., by 

using heat flow meters. Consequently, hourly consumption values can be corrected with simple numeric 

factors provided as parameters by the final user (through the input JSON file) according to national or 

European norms and specific demo case characteristics, before being aggregated on the considered time 

period. This allows future developments, including, if needed, the implementation of more complex 

losses’ formulas, not requiring anymore to input the correction factors. Considering demo case 

consumption typical monitoring, the choice of applying by default only generator losses correction on 

these data was taken, while emission, regulation and distribution losses correction factors are applied on 

simulation results. The developed KPIs are in fact adopting the UNI-TS 11300-2 approach supporting the 

definition of heating and domestic hot water final energies from zone net energies, by considering i.) 

utilisation losses, including in order i.a) emission losses, i.b) regulation losses, and i.c) distribution losses, 

and ii.) generation losses (see also UNI-TS 11300-4) – a sketch of these losses is reported in Figure 15. For 

cooling a similar approach is adopted in line with UNI-TS 11300-3. Nevertheless, the organisation of these 

specific KPIs allow, thanks to the multiple losses’ points, to integrate different approaches, by for example 

skipping not needed ones (setting them equal to 1) or substituting values with expressions or databases 

– in line with the above-mentioned potential future expansions.  
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Figure 15 Sketch of the adopted losses approach 

In case monitored data need correction at previous steps, it can be possible to use PREDYCE methods for 

a preprocessing, since they are simply provided as Python static methods (not requiring class 

instantiation). 

static distribution_losses(value, distr_factor=1) 

Apply distribution losses correction factor. 

Parameters 

distr_factor (float, default 1) – distribution factor, in range [0,1] 

Returns 

consumption value with correction applied 

Return type 

float 
 

Here primary energy need for heating is reported as an example. The following method belongs to 

EnergyPlusKPI class and applies correction factors to distribution. 
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→  class predyce.kpi.EnergyPlusKPI(df, idf, plot_dir, start_date=None, end_date=None, graph=False) 

Q_h(em_factor=1, reg_factor=1, distr_factor=1, gen_factor=1, ep_factor=1) 

Prepare eplosout.csv to compute primary energy need for heating in kWh/m2, applying correction factors for 

emission, regulation, distribution and generation losses, then multiplying by primary energy factor. 

Parameters 

• em_factor (float, default 1) – correction factor for emission losses, in range [0,1]. 

• reg_factor (float, default 1) – correction factor for regulation losses, in range [0,1]. 

• distr_factor (float, default 1) – correction factor for distribution losses, in range [0,1]. 

• gen_factor (float, default 1) – correction factor for generation losses, in range [0,1]. 

• ep_factor (float, default 1) – primary energy conversion factor, in range [0,1]. 

Returns 

Primary energy need for heating 

Return type 

float 
 

Then, the same method belonging to the parent KPI class is reported. It applies remaining correction factor 

and converts to primary energy. In the following also f_Q_h is reported as an example of final energy need 

for heating: it only differs from primary energy for the last conversion step. 

→  class predyce.kpi.KPI(plot_dir, graph=False) 

Q_h(df, gen_factor=1, ep_factor=1) 

Compute primary energy need for heating in kWh/m2, applying correction factors for generation losses, then 

multiplying by primary energy factor. Corrections for emission, regulation and distribution losses are 

considered previously applied. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at “Q_h[kWh/m2]” 

and “Date/Time” columns. 

• gen_factor (float, default 1) – correction factor for generation losses, in range [0,1]. 

• ep_factor (float, default 1) – primary energy conversion factor, in range [0,1]. 

Returns 

Primary energy need for heating 

Return type 

float 
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f_Q_h(df, gen_factor=1) 

Compute final energy need for heating in kWh/m2, applying correction for generation losses but considering 

correction factors for emission, regulation and distribution as already applied. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at “Q_h[kWh/m2]” 

and “Date/Time” columns. 

• gen_factor (float, default 1) – correction factor for generation losses, in range [0,1]. 

Returns 

Primary energy need for heating 

Return type 

float 
 

Another important KPI related to consumption is the energy signature. It is mainly a visual representation 

of the building energy behaviour, so it requires to return enough coordinates to create desired graphs. 

Particularly, the developed method can return data points useful in generating both one-dimensional (x-

axis is the difference between indoor and outdoor dry bulb temperatures) and two-dimensional (x- and 

y-axes contain temperature difference and global solar radiation) energy signatures for heating and 

cooling net energy needs, considering a weekly average, as suggested in literature. Moreover, the method 

can also return energy signature graphs on request, as shown in Figure 16. 

energy_signature(df) 

Compute energy signature in a standardized format: dataframe used should contain “Date/Time”, 

“T_db_o[C]”, “T_db_i[C]”, “Rad_global_o[W/m2]” and HVAC consumptions columns, “Q_c[Wh/m3]” and 

“Q_h[Wh/m3]”. 

Parameters 

dataframe (class:pandas.core.frame.DataFrame) – dataframe containing at least “Date/Time”, “T_db_o[C]”, 

“T_db_i[C]”, “Rad_global_o[W/m2]”,”Q_h[Wh/m3]”, “Q_c[Wh/m3]” columns 

Returns 

Minimum points allowing to build 1D and 2D graphs of energy signature. 

Return type 

dict 
 

Energy signature is an example of KPI returning a dictionary instead of a float, but this is the case of any 

more complex KPI, for example returning a distribution of points inside given categories. In the following 

is shown an example of energy signature output. 
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Example 

Returned dictionary structure: 

{ 
    "1D": { 
        "cooling": { 
            "deltaT": list of 2 points, 
            "cooling": list of 2 points, 
        }, 
        "heating": { 
            "deltaT": list of 2 points, 
            "heating": list of 2 points, 
        }, 
    }, 
    "2D": { 
        "cooling": { 
            "deltaT": list of 4 points, 
            "solarRadiation": list of 4 points, 
            "cooling": list of 4 points, 
        }, 
        "heating": { 
            "deltaT": list of 4 points, 
            "solarRadiation": list of 4 points, 
            "heating": list of 4 points, 
        }, 
    }, 
} 

 

 

Figure 16 Example of energy signature graphs 

Considering the case of building un-equipped with cooling system, as can be the case for typical and 

historical Mediterranean buildings, it can be useful to quantify the thermal discomfort in terms of energy 

consumption that could be supplied to re-establish a comfort condition. The concept behind the structure 

of this KPI is expanded in correlated deliverable D3.2 The same concept can be theoretically applied also 

to buildings un-equipped with heating system (which is a rarer case in Europe), so defining a fictitious 

heating indicator.  
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fict_cool(dataframe_off, dataframe_on, eu_norm='16798-1:2019', alpha=0.8) 

Return fictitious cooling computed as the amount of cooling consumption needed in a building without 

mechanical system in order to reach category I comfort of adaptive comfort model. 

Parameters 

• dataframe_off (class:pandas.core.frame.DataFrame) – dataframe containing at least 

“Date/Time”, “T_op_i[C]”, “T_db_o[C]” columns in order to compute adaptive comfort model 

categories. 

• dataframe_on (class:pandas.core.frame.DataFrame) – dataframe containing at least 

“Date/Time” and “Q_c[Wh/m2]” columns, of the same building with HVAC installad and ACH 

ventilation set to 0. 

• eu_norm (str, optional) – It can be set to ‘15251:2007’ if old UE norm computation is desired, 

defaults to ‘16798-1:2019’. 

• alpha (float, optional) – With old UE norm ‘15251:2007 alpha is a free parameter in range [0,1), 

defaults to 0.8 

Returns 

fictitious cooling total [kWh/m2] 

Return type 

float 
 

Even if the DEPC protocol mostly focusses on energy and less on comfort, PREDYCE includes the possibility 

to retrieve thermal comfort KPIs that will be tested in demonstration cases for potential evaluation in the 

final version of the protocol. Hence, concerning thermal comfort KPIs, different methods have been 

developed. Regarding Fanger model the calculation workflow for PMV (Predicted Mean Vote) and PPD 

(Predicted Percentage of Dissatisfied) was implemented in line with the one described in ISO 7730 

standard, in which different comfort categories are suggested according to PMV ranges – i.e., category I 

(±0.2 PMV); II (±0.5 PMV); and III (±0.7 PMV). Particularly, hours falling in category III are considered in 

thermal discomfort. The developed pmv_ppd function returns a dictionary containing both the number 

and the percentage (expressed as POR – Percentage Outside the range) of hours in category III. Default 

values are provided for Fanger model parameters, but they can also be set through the input JSON file: 

the clothing level is assumed to be 0.5 clo, while the metabolic rate is set to 1.2 met, corresponding to 

standing relaxed condition or sitting activities. 

Moreover, Adaptive Comfort Model categories are considered to describe thermal comfort. Both old 

(15251:2007) and new (16798-1:2019) European standards can be used for the computation of the 

running mean temperature (new norm set as default procedure). Hours in category III are considered for 

thermal discomfort in order to compute the POR, while for a deeper analysis all categories distribution 

are retrieved. It is also possible to filter hours according to occupancy, such considering only occupied 

time periods in thermal comfort analysis. The field when instead can be used to reduce the analysed 

period with respect to simulation period. The adaptive_residuals function instead is used to return the 

average distance from categories boundaries in order to have a general look at points distribution. 
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Moreover, a graph can be saved showing the points distribution (with hourly aggregation) with respect to 

categories boundaries over the considered time period, as shown in Figure 17. 

pmv_ppd(df, vel=0.1, met=1.2, clo=0.7, wme=0, filter_by_occupancy=0) 

Return Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) calculated in accordance 

to ISO 7730-2006 standard. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – dataframe containing at least “Date/Time”, 

“T_db_i[C]”, “T_rad_i[C]” and “RH_i[%]” columns. Optional “Occupancy column” accepting only 

0 and 1 values. 

• vel (float, optional) – relative air speed, defaults 0.1 

• met (float, optional) – metabolic rate, [met] defaults 1.2 

• clo (float, optional) – clothing insulation, [clo] defaults 0.5 

• wme (float, optional) – external work, [met] defaults 0 

• standard (str, optional) – default “ISO 7730-2006”, but currently unused 

• filter_by_occupancy (int, optional) – It can be set 0 or 1, depending on wether activate 

occupancy filtering on thermal comfort KPIs computation or not, default 0. 

Returns 

dictionary containing keys “POR” (Percentage Outside the Range) and “”No_h_discomfort”, computed as 

percentage and number of hours in which PMV is above or below 0.7 and so PPD is above around 20%. 

Return type 

dict 
 

adaptive_residuals(dataframe_off, eu_norm='16798-1:2019', alpha=0.8) 

Return average distance from Adaptive Comfort Model upper categories thresholds. 

Parameters 

• dataframe_off (class:pandas.core.frame.DataFrame) – Dataframe containing at least 

‘Date/Time’, ‘T_db_o[C]’ and ‘T_op_i[C]’ columns. 

• eu_norm (str, optional) – EU normative to compute Adaptive Comfort Model thresholds. It can 

be ‘16798-1:2019’ or ‘15251:2007’, defaults to ‘16798-1:2019’ 

• alpha (float, optional) – EU ‘15251:2007’ free parameter ranging [0,1), defaults to 0.8 

Returns 

Dictionary where ‘>3’: average distance from cat 1 upper bound; ‘>0’: average distance from central line of 

cat 1 

Return type 

dict 
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adaptive_comfort_model(df, eu_norm='16798-1:2019', alpha=0.8, filter_by_occupancy=0, when={}) 

Compute adaptive comfort model in a standardized format. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – dataframe should contain “Date/Time” column in 

format ‘year/month/day hour:minutes:seconds’, “T_db_o[C]” preferably with a subhourly 

timestep and “T_op_i[C]”. Optional “Occupancy” column accepting only 0/1 values. 

• eu_norm (str, optional) – It can be set to ‘15251:2007’ if old UE norm computation is desired, 

defaults to ‘16798-1:2019’. 

• alpha (float, optional) – With old UE norm ‘15251:2007’ alpha is a free parameter in range [0,1), 

defaults to 0.8 

• filter_by_occupancy (int, optional) – It can be set 0 or 1, depending on wether activate 

occupancy filtering on thermal comfort KPIs computation or not, default 0. 

• when (dict, optional) – dictionary with ‘start’ and ‘end’ keys and values in format 

‘year/month/day hour:minutes:seconds’ 

Returns 

Number of hours in each of the 7 comfort categories and POR computed as % of hours outside cat 2 

boundaries. 

Return type 

dict 
 

 

 

Figure 17 Example of Adaptive Comfort Model points distribution graphs 

Concerning comfort-quality ‘DYCE’ related KPIs, the most important indicators underlined in WP2 

outcomes regard indoor CO2 concentration. Particularly, the number of hours below the threshold of 600 

ppm and above the threshold of 1000 ppm can be retrieved, suggesting potential over- and under-
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ventilated conditions. Different thresholds can be easily included if additional correlated-KPIs, e.g., 

confinement indices, would be necessarily during the project demonstration phase. 

n_co2_aIII(df) 

Compute number of hours with CO2 concentration above 1000 ppm highlighting possible under-ventilated 

conditions. 

Parameters 

df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at least CO2 concentration indoor 

“CO2_i[ppm]” and “Date/Time” columns. 

Returns 

number of hours above threshold III 

Return type 

int 

n_co2_bI(df) 

Compute number of hours with CO2 concentration below 600 ppm highlighting possible over-ventilated 

conditions. 

Parameters 

df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at least CO2 concentration indoor 

“CO2_i[ppm]” and “Date/Time” columns. 

Returns 

number of hours below threshold I 

Return type 

int 
 

All groups of KPIs (energy, comfort/quality KPIs, ...) can be also returned in form of timeseries results, with 

a default time aggregation step of one hour. The word timeseries inside the methods names allows to 

identify these KPIs as a particular category that will generate a different output named 

data_res_timeseries.csv containing timestamps as indexes and KPIs results in different columns. 

Considering the nature of this file, it is generated separately for each simulation in a devoted subfolder 

(together with graphs). Timeseries results can be useful to both deepen the behaviour of specific 

simulated building conditions and to give a visual idea of the simulated variables trend through interfaces.  
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timeseries_q_c(df, timestep='1H', gen_factor=1, ep_factor=1) 

Compute timeseries values (sum over the time period) of primary energy need for cooling in kWh/m2, 

applying correction factors for generation losses, then multiplying by primary energy factor. Corrections for 

emission, regulation and distribution losses are considered previously applied. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at “Q_c[kWh/m2]” 

and “Date/Time” columns. 

• timestep (str, default = "1H") – time aggregation required 

• gen_factor (float, default 1) – correction factor for generation losses, in range [0,1]. 

• ep_factor (float, default 1) – primary energy conversion factor, in range [0,1]. 

Returns 

DataFrame of cooling primary energy values over time 

Return type 

class:pandas.core.frame.DataFrame 
 

timeseries_co2(df, timestep='1H') 

Compute timeseries of indoor CO2 concentration (ppm) according to requested time aggregation (average on 

the time period). 

Parameters 

• timestep (str, default = "1H") – time aggregation required 

• df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at least CO2 

concentration indoor “CO2_i[ppm]” and “Date/Time” columns. 

Returns 

DataFrame of indoor co2 values over time 

Return type 

class:pandas.core.frame.DataFrame 
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timeseries_acm_hourly_cat(df, eu_norm='16798-1:2019', alpha=0.8, filter_by_occupancy=0, when={}) 

Compute hourly ACM category according to different European normatives. Filters according to occupancy or 

dates can be applied. ACM category is expressed in terms of distance from comfort central line. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – dataframe should contain “Date/Time” column in 

format ‘year/month/day hour:minutes:seconds’, “T_db_o[C]” preferably with a subhourly 

timestep and “T_op_i[C]”. Optional “Occupancy” column accepting only 0/1 values. 

• eu_norm (str, optional) – It can be set to ‘15251:2007’ if old UE norm computation is desired, 

defaults to ‘16798-1:2019’. 

• alpha (float, optional) – With old UE norm ‘15251:2007 alpha is a free parameter in range [0,1), 

defaults to 0.8 

• filter_by_occupancy (int, optional) – It can be set 0 or 1, depending on wether activate 

occupancy filtering on thermal comfort KPIs computation or not, default 0. 

• when (dict, optional) – dictionary with ‘start’ and ‘end’ keys and values in format 

‘year/month/day hour:minutes:seconds’ 

Returns 

Dataframe containing “Date/Time” and “dist” columns. 

Return type 

class:pandas.core.frame.DataFrame 
 

Concerning graphs only devoted KPIs, carpet plots are the main example of strictly visual indicators and 

analysis. The same function is able to receive in input different environmental variables and adapt graph 

generation to the different cases, e.g., indoor and outdoor dry bulb temperature, CO2, distance from 

adaptive comfort model category I central line. Examples are shown in Figure 18. 

carpet_plot(df, variable, title=None) 

Generate a carpet plot 

Parameters 

• df (class:pandas.core.frame.DataFrame) – DataFrame which must contain Date/Time and va-

riable column. 

• variable (str) – variable name according to standardized nomenclature 

• title (str, optional) – Title of the figure, defaults to None  
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Figure 18 Example of carpet plots 

4.4 Scenarios 

In the following paragraphs, PREDYCE scenarios are briefly listed and described, with particular attention 

to sensitivity analysis scenario. Then, in section 4.5 examples of usage are reported. As previously detailed 

in section 4.1 and 4.2, PREDYCE actions and functionalities are exploited combining them in different 

scripts, such allowing to perform different tasks. At present, the different scripts are treated as separate 

applications, each potentially executable both locally and remotely, but in the future they can be unified 

under the same application and recognized through a scenario name keywork inside the input JSON file. 

Different PREDYCE scenarios can be exploited to act both on simulated and/or monitored data. 

4.4.1 Sensitivity analysis 

Sensitivity analysis is the base and most powerful PREDYCE scenario, since any other is somehow based 

on it. It allows performing parametric analysis by automatically modifying the base building model 

according to permutations of all parameters listed in the input JSON file and computing requested KPIs. 

Other scenarios may exploit different logics in the choice or combination of parameters, but at the base 

there is PREDYCE capability of executing parallel runs of EnergyPlus simulations, storing results in 

aggregated and lightweight form. At present, analysis on best values combination (e.g., to find minimum 

energy consumption) has to be done next by looking (also with scripting) at all results contained in 

data_res.csv, while it is not implemented yet an optimization procedure through optimization algorithms 

or surrogate modelling in order to accelerate space of parameters scanning and find an optimal building 

set up. Anyhow, the future integration of optimization procedures, also exploiting the many already 

existing powerful Python libraries devoted to this task, is made possible by the tool modularity.  

Since sensitivity analysis is the base PREDYCE scenario, it can give a clear idea on how a scenario can be 

run both locally and remotely. Figure 19 shows all available command line options: besides mandatory 

inputs, many other arguments can be set or specified, for example desired directories for outputs (-d) and 

plots (-p), the path of the IDD file, whether to include or not the base building model with no modifications 

in the permutation of parameters (-o), the number of CPUs to be used (-j) which are otherwise 

automatically set to the maximum allowed by the used machine. Among the arguments it can be also 

specified the path of monitored data file (-m), but this is unused for sensitivity analysis. 
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Figure 19 Sensitivity analysis command line options 

Figure 20 instead shows how the same script can be launched remotely through a basic web interface. In 

this case just mandatory inputs can be inserted while all other settings are handled automatically on the 

web service running on the server. Also, server-to-server communication can be exploited by sending 

REST requests by a code without the need of the graphical interface. The latter approach is the one 

adopted during the WP4 implementation actions.  

 

Figure 20 Sample web interface for remote run 

As previously said, at present sensitivity analysis requires a not automated post-analysis step both to find 

optimal building conditions and to deepen meaning of obtained results. Despite in the future automatic 

procedures may be implemented, the freedom of analysis guaranteed by this scenario allows 

methodology definition also for other more specific use cases. For example, Figure 21 shows simple 

graphs obtained as a post-analysis on aggregated results contained in the same data_res.csv: these kinds 

of graphs can be used as a base to further create a new retrofit scenario, suggesting solutions according 

to different combinations of criteria (e.g., integrating also cost analysis). 

 

Figure 21 Example of post-analysis for sensitivity analysis application to retrofit use case applied to one of the 

TPM residential building 
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4.4.2 Other scenarios 

Two other scenarios have been developed specifically for E-DYCE purposes and are here just briefly listed, 

while a detailed description can be found in correlated deliverable D3.2. Particularly, they differ from 

sensitivity analysis for the ability of integrating monitored data in the loop. 

• Model verification: it is a semi-automatic scenario since it requires at present a human 

interpretation in order to choose how to launch it (e.g., which parameters to include in the 

calibration process and in which range) and how many times (e.g., the step). It allows to choose 

among a pre-defined set of building parameters minimizing RMSE and MBE on defined variables 

(e.g., consumption or internal temperatures), comparing simulation and monitored data from the 

field. It exploits PREDYCE ability to compute KPIs also on monitored data and to generate EPW 

from real weather data, which is included as an extra module in the Python tool. 

• Performance gap: it is one of the most significative scenarios for E-DYCE project since it allows to 

return the performance gap between calibrated simulations performed under standard and/or 

more realistic building settings versus monitored actual building behaviour. 
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5 Application testing 

A basic sensitivity analysis application case is proposed in this chapter to highlight PREDYCE functionalities 

and organisation. The example can be launched from remote through the devoted REST API or a dedicated 

web interface2, by asking to POLITO research unit temporary credentials available for this purpose3. Also 

input files to be used can be found in a shared folder4 together with outputs already generated. The 

generation of the outputs may take several minutes depending on many factors; the output files are then 

retrieved in the Download folder of the browser whenever the web interface is used. In the following the 

example will be explained in detail in order to make easier the understanding of folder content. 

For an example purpose it was used as building model a typical residential flat illustrated in Figure 22, part 

of a multi-storey building, in line with residential building typologies suggested in architectural manuals - 

see for example (Neufert et al., 2013). The building is structured whit two flats in each floor, while just a 

single unit is simulated. The simulated unit is considered to be at an intermediate level, with upper, lower 

and adjacent units working at the same temperature. Upper-floor balconies are also included in order to 

consider shading effects. The IDF file of this building model can be found in the provided folder. 

 

Figure 22 Sample residential unit 

Concerning weather file, the Meteonorm-produced TMY of Casaccia (Rome), where ENEA living LAB is 

located, is considered in this example and can be found in the folder. The input JSON file instead is 

structured to test the impact of different retrofit solutions on energy consumption over the whole year. 

In Figure 23 the part of input file including the tested actions is reported. An insulation layer is added both 

externally to boundary walls and to the ceiling with three thicknesses (expressed in meters): the material 

names correspond with objects stored in internal database of IDF objects. Moreover, both windows to 

wall ratio and windows type are varied. 

 

2 http://130.192.20.228:3200/sa 

3 You can send an e-mail to giacomo.chiesa@polito.it, paolo.grasso@polito.it, francesca.fasano@polito.it 

4 https://www.dropbox.com/sh/dwpexstrky7lqlb/AABpMwlYNF-mW95PqAXVEDeda?dl=0 

itchen 

http://130.192.20.228:3200/sa
https://www.dropbox.com/sh/dwpexstrky7lqlb/AABpMwlYNF-mW95PqAXVEDeda?dl=0
http://130.192.20.228:3200/sa
https://www.dropbox.com/sh/dwpexstrky7lqlb/AABpMwlYNF-mW95PqAXVEDeda?dl=0
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{ 
    "actions": { 
        "add_external_insulation_walls": { 
            "ins_data": [[XPS Extruded Polystyrene CO2 Blowing", "Gypsum Plastering"]], 
            "Thickness": [0.05, 0.15, 0.25] 
        }, 
        "add_insulation_flat_roof": { 
            "ins_name": ["MW Glass Wool (rolls)"], 
            "Thickness": [0.05, 0.15, 0.25] 
        }, 
        "change_windows_system": { 
            "win_type": ["double glazing argon", "triple glazing air"] 
        }, 
        "change_wwr": { 
            "wwr_value": [0.2, 0.4, 0.6] 
        } 
    } 
}  

Figure 23 Input JSON actions 

The computed KPIs are reported in Figure 24 and include final and primary energy needs for heating and 

cooling, primary energy needs for lighting, energy signature of heating and cooling net energy needs and 

finally carpet plots of PPD (Predicted Percentage of Dissatisfied) for each parametric simulation. 

Concerning consumptions, loss factors have been chosen according to typical Italian buildings conditions, 

in line with tables in the UNI-TS 11300 series and UNI-EN 15316, and assuming non-renewable electric 

sources for cooling and lighting, while natural gas for heating - primary non-renewable energy factors are 

retrieved by the UNI EN 15603 annex E. Also, timeseries results with default hourly timestep are requested 

as KPIs for heating and cooling primary energy needs. 

"kpi": { 
    "Q_c": {"em_factor": 0.95, "reg_factor": 0.95, "distr_factor": 1, 
            "gen_factor": 2.5, "ep_factor": 3.14}, 
    "Q_h": {"em_factor": 0.97, "reg_factor": 0.94, "distr_factor": 0.97, 
            "gen_factor": 1, "ep_factor": 1.36}, 
    "Q_I": {"ep_factor": 3.14}, 
    "f_Q_c": {"em_factor": 0.95, "reg_factor": 0.95, "distr_factor": 1, 
              "gen_factor": 2.5}, 
    "f_Q_h": {"em_factor": 0.97, "reg_factor": 0.94, "distr_factor": 0.97, 
              "gen_factor": 1}, 
    "energy_signature": {}, 
    "timeseries_Q_c": {}, 
    "timeseries_Q_h": {}, 
    "carpet_plot": {"variable": "ppd"} 
}  

Figure 24 Input JSON KPIs 

In main output folder data_res.csv file can be found. Parts of it are reported in Figure 25 and Figure 26, 

focusing on input and output columns separately. Each row in the file corresponds to a specific 

combination of input parameters (insulation thickness, window type, etc…) and it is identified by a unique 

index number. Numbers are not ordered since all simulations were executed in parallel, so order reflects 

simulations ending time. Besides input descriptive columns, calculated KPIs are attached: they can have 

numeric or dictionary form depending on the quantity of information they carry. Simple post-analysis can 

be easily performed directly acting on the CSV file (e.g., in Microsoft Excel), for example ordering results 

by lower total consumption values. Together with aggregated results, for each simulation a folder named 
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with row index identifier is also generated and contains both timeseries results and plots. Figure 27 shows 

an example of data_res_timeseries.csv: hourly consumption values are associated to correspondent 

timestamp for the simulation period. 

 
 

add_external_insulation_walls.Thickness add_insulation_flat_roof.Thickness change_windows_system.win_type change_wwr.wwr_value 

0 0.05 0.05 double glazing argon 0.2 

1 0.05 0.05 double glazing argon 0.4 

2 0.05 0.05 double glazing argon 0.6 

Figure 25 Example of data_res.csv inputs part 

  
Q_c Q_h Q_I f_Q_c f_Q_h energy_signature 

0 83.20 68.50 40.96 26.49 50.36 {"1D": {"cooling": {"deltaT": [-2.43, 10.13], "cooling": [9.12, -1.99]}, 
"heating": {"deltaT": [-2.43, 16.41], "heating": [-0.46, 1.36]}}, "2D": 
{"cooling": {"deltaT": [-2.43, 10.13, -2.43, 10.13], "solarRadiation": 
[277.09, 277.09, 514.22, 514.22], "cooling": [7.55, -2.55, 9.54, -
0.56]}, "heating": {"deltaT": [-2.43, 16.41, -2.43, 16.41], 
"solarRadiation": [99.12, 99.12, 514.22, 514.22], "heating": [0.57, 
1.51, -0.55, 0.38]}}} 

1 161.1376326 66.25480436 39.98722088 51.31771739 48.71676791 < … > 

2 241.3111602 67.5757633 39.64473542 76.85068797 49.68806125 < … > 

Figure 26 Example of data_res.csv outputs part 

 
Date/Time timeseries_Q_c timeseries_Q_h 

01/01 00:00 0 0.00840 

01/01 01:00 0 0.00988 

01/01 02:00 0 0.00843 

01/01 03:00 0 0.00877 

01/01 04:00 0 0.00907 

01/01 05:00 0 0.00937 

Figure 27 Example of data_res_timeseries.csv 

Figure 28 and Figure 29 report energy signatures for best and worse parametric choice in terms of total 

primary energy need. Best case results to be the most insulated one with lower WWR, while worst case 

the less insulated with higher WWR. Figure 30 instead shows PPD carpet plots for both cases, showing a 

reduction of dissatisfied particularly in mid-seasons. Other single simulation-based graphs can be also 

generated through PREDYCE in order to deepen post-analysis of aggregated results.   

 

Figure 28 Energy signature best case (folder 51) 
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Figure 29 Energy signature worst case (folder 2) 

   

Figure 30 PPD carpet plots for best (a) and worse (b) cases 
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6 Conclusions and Outlook 

D3.1 includes, such as mentioned in the introductive section, this report detailing methodological and 

specific descriptions correlated to the development of a sample dynamic simulation platform supporting 

E-DYCE functionalities and communicating with the E-DYCE middleware (based on Fusix).  Advanced 

functionalities connected to the integration of the dynamic simulation platform in the E-DYCE middleware 

are discussed in related deliverables from WP3 and WP4. Current PREDYCE version adopted for E-DYCE 

purposes bases on EnergyPlus v8.9 and compatibility with v9.x is not assured due to changes in the 

correlated EnergyPlus IDD files. Additionally, the development of actions and KPIs is expected to continue 

during next project phases thanks to outcomes of other WPs and in particular WP2 and WP4 and thanks 

to the applications of the above-mentioned solutions to project demo buildings (WP5).  

Nevertheless, the test of result compatibility between EnergyPlus and DIAL+ shows that it is possible to 

be “software neutral” considering the potential overlapping between initial inputs and retrieved outputs, 

opening the possibility, during a commercial deployment phase, to apply the E-DYCE methodology to 

other dynamic tools by including different dynamic simulation platforms. 

Initial results from ‘DYCE’ development action (D3.1 and D3.2) are reported in (Chiesa et al., 2021), while 

additional dissemination actions are expected during next months.  
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8 Annex A5 

Heavyweight – High thermal mass  

Without window 

 

With window 

 

 

 

 

5 This Annex is developed by ESTIA 
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Lightweight – Low thermal mass  

Without window 

 

With window 
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