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1 Executive Summary 

Task T3.2 – Free running modes is part of WP3 – Simulation and Optimisation Enablers and focusses on 

free-running KPIs and inputs and on the inclusion of extra usage scenarios to the sample dynamic 

simulation platform developed under T3.1 - Dynamic simulation architectures and detailed in D3.1. The 

sample simulation platform is based on the Python library PREDYCE – Python semi-Realtime Energy 

DYnamics and Climate Evaluation – that is under-development at POLITO. In particular, D3.2 details extra 

functionalities devoted to: i.) include free-running input-modification actions and devoted KPI 

calculations, including ii.) fictitious cooling, and iii.) describe additional scenarios of usage of the PREDYCE 

tool. The latter includes the performance gap scenarios, considering also semi-automatic verification and 

an adapted application of the sensitivity analysis scenario for free-running purposes. In line with twin 

deliverable D3.1, D3.2 is composed by this report describing the adopted methodological approach and 

introducing PREDYCE extra-functionalities supporting the specific above-mentioned scenarios. Behind this 

report D3.2 also includes the possibility to run performance gap scenarios. D3.2 objectives and its 

structure are described in the following Section, while the deliverable also includes sample applications 

along the text to increase readability.    
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2 Deliverable objectives and structure  

This deliverable describes extra functionalities added to the dynamic simulation platform described in E-

DYCE D3.1 to fit the objective of task 3.2 supporting the calculation of climate related KPIs and local free 

running potential under typical and real weather conditions.  

The adopted dynamic simulation platform, which is based on the PREDYCE under-development tool by 

POLITO – “DYCE” development action –, is expanded adding a new application scenario to allow the 

comparison between real and simulated building behaviours under the same weather conditions 

supporting the base identification of performance gaps between standard simulated models and real 

monitored conditions. Additionally, the task includes in the sample simulation platform different 

bioclimatic and passive technologies supporting for example passive and ventilative cooling issues. The 

free-running module is hence conceived as a series of additional inputs and outputs added to the input 

and output analyser modules described in D3.1. The free running added functionalities allow, for example, 

to correlate comfort/discomfort conditions into fictitious energy needs to support the integration of 

bioclimatic and passive technologies for space heating/cooling in the dynamic simulation process. This 

process allows to define fictitious energy needs to potentially feed a future labelling approach and 

compare buildings even when one or more of them are working in free-running mode, such as traditional 

buildings without cooling systems. Hence, D3.2 includes new input actions and new output KPIs – see also 

the list mentioned in E-DYCE D1.2 (EDYCE, 2021), such as the number of hours in which machine is 

operating, the calculation of the energy signature, comfort/discomfort conditions adopting both Fanger 

and adaptive thermal comfort models in line with current CEN and ISO standards (EN ISO, 2005; European 

Committee for Standardization, 2019). Intuitive graphs are also produced demonstrating the possibility 

to use output data to feed recognized graphical outputs to analyse building comfort/discomfort.  

Several of the above-mentioned functionalities include the usage of an extra PREDYCE module defined to 

automatically transform monitored weather data into EnergyPlus weather simulation files (EPW) that is 

developed by POLITO under T3.3 actions in version 'DYCE’v1 to automatically read data collected by the 

meteorological station installed at TPM.  

D3.2 is structured as follows: Section 3, after a short remind of the “DYCE” development action of the 

PREDYCE tool – see also D3.1 –, it details the E-DYCE free-running correlated input and output analyser 

actions including devoted KPIs; Section 4 describes the developed protocol and scenario to compare real 

Vs simulated building behaviours, while Section 5 shortly describes the fictitious cooling calculation. 

Sample applications are given along the above-mentioned sections to support the module description.  

3 Free-running extra functionalities 

According to E-DYCE D1.2 (EDYCE, 2021), a building is working in free-running mode when or i.) a system 

is not installed, such as for example in traditional Mediterranean houses in which any cooling system is 

installed and/or any heating system is present with the exclusion of fireplaces or personal electrical 

devices, or ii.) a system is turned off during the period of analysis. A free-running building is hence a 

condition in which user comfort (thermal comfort or other comfort issues) is correlated to free-floating 

conditions taking advantages from building envelope ability in mitigating and preventing discomfort 

conditions acting as boundary between climatic and weather outdoor conditions and indoor spaces – see 

for example (Ghiaus, 2003). Additional technologies, such as heat gain increasing in winter and/or heat 

gain prevention (shading), mitigation (thermal mass), and dissipation (e.g., ventilative cooling) are also 
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part of the free-running considered domain enlarging and managing comfort during operating periods 

without mechanical systems. These passive cooling and heating strategies (or hybrid solutions with 

minimal mechanical supports, e.g., ventilation by fans) expanding the free-running mode applicability 

without reaching discomfort are in lines with main recognized climatic and bio-climatic design approaches 

– see for example zones in the well-known Givoni-Milne bioclimatic chart (Figure 1 sampling technologies 

on Typical Metereological Years for (a) TPM and (b) Rome-Casaccia – by Climate Consultant (Liggett and 

Milne, 2017)). 

 

Figure 1 Potential impact of free-running technologies on expected thermal comfort based on TMY of (a) TPM 

and (b) Rome-Casaccia 

Focussing on the specific deliverable contents, in this section they are described main extra functionalities 

and scenarios of the PREDYCE tool devoted to support free-running strategy simulations for E-DYCE. 

Additionally, the correlation between free-running model discomfort conditions and substitutive energy 

needs is introduced. In line with E-DYCE D1.2 and D2.4, this correlating analysis is based on the fictitious 

cooling/heating approach that is here transposed in a PREDYCE KPI. Additionally, sample applications of 

the PREDYCE sensitivity analysis scenario are given for free-running functionalities – see Section 4.1. 

3.1 The PREDYCE tool 

PREDYCE (Python semi-Realtime Energy DYnamics and Climate Evaluation) is the Python library, deeply 

described in correlated deliverable 3.1, developed inside E-DYCE project to work as an EnergyPlus 

simulation platform, allowing automatic editing of IDF files (building models) and KPIs computation on 

both simulation results and monitored data. PREDYCE is built as an ensemble of independent modules, 

then combined in task-oriented scripts (named scenarios) which can perform complex actions and analysis 

exploiting all library functionalities. At present, each scenario works as an independent tool application, 

executable both remotely through a REST API and locally by command line.  

PREDYCE main modules are IDF editor, KPIs calculator and runner. Moreover, additional modules are 

present to address specific tasks, like EPW file managing. Main inputs to all PREDYCE scenarios are IDF 

model, EPW file, eventual CSV of monitored data and a JSON file structured with keywords allowing to 

recall different tool functionalities and customize the parametric request. Outputs instead are CSV files 
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containing aggregated KPIs for the time period and timeseries results. Additionally, plots are generated in 

simulation-based subfolders in order to deepen KPIs analysis. More details on PREDYCE structure and 

input/outputs workflow can be found in deliverable D3.1, while following sections will be focused on 

PREDYCE applications to buildings working in free-running mode. 

3.1.1 EPW compiler module* 

*This sub-section also includes results of POLITO efforts in T3.3.  

To compare actual and standard building behaviour, it is necessary to be able to simulate the building 

model under past monitored weather conditions. Consequently, an EPW compiler module able to 

generate an EPW from weather station downloaded data has been developed as additional PREDYCE 

functionality. The module is organized in independent steps to be more flexible to any update and change. 

The steps followed inside the module are: 

1. Generate a CSV file containing raw data from weather station, updated week by week or each 

time desired (it could be also organized to be updated in real time). Data are saved per minute 

ignoring seconds resolution to save storing space and avoiding too many missing values. This step 

is dependent from the particular weather station from which data are downloaded and more 

generally to the data source being possible to adapt the procedure to include data from services, 

e.g., Weather Underground1. Being an independent step, it can be each time organized differently 

in accordance with specific weather station API. 

2. Generate a CSV file of clean data: each type of data is cleaned according to specific rules derived 

looking at timeseries and weather station manual.  

3. Generate a CSV file ready for EPW filling by hourly aggregating and computing missing required 

fields through formulas from other data – e.g., splitting the global horizontal irradiation into its 

components – or building them according to specific rules (for coded fields like Present Weather 

Codes). 

4. Generate EPW file from available data and further fill it to cover entire year with TMY integration 

(always needed also for short simulations) or implementing other filling strategies. This step is 

based on Python pyepw2 library. 

3.1.2 PREDYCE scenarios 

Three main scenarios have been developed to answer E-DYCE project goals, in accordance with other WPs 

outcomes and needs. Particularly, the base PREDYCE scenario is named sensitivity analysis and allows to 

perform parametric simulations automatically acting on many buildings’ characteristics and computing 

KPIs according to European standards and norms and newly defined indicators – see also E-DYCE 

deliverables D1.2 and D2.4. In the following an example of sensitivity analysis applied to free-running 

optimization is proposed, while in deliverable D3.1 an application to retrofit solutions is reported. 

Moreover, more complex scenarios have been developed, all with bases on sensitivity analysis, in order 

to reach different project objectives: the performance gap scenario is in charge of evaluating the 

 

1 https://www.wunderground.com  

2 https://github.com/rbuffat/pyepw 

https://www.wunderground.com/
https://github.com/rbuffat/pyepw
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difference between actual and standard building behaviour, exploiting PREDYCE ability to work both on 

simulation results and monitored data, while the model verification scenario can be used to speed up and 

simplify building models adjustments to real measured data, which is a necessary step before computing 

a performance gap. 

3.2 PREDYCE free-running correlated actions 

In deliverable 3.1, both PREDYCE IDF editing actions and computable KPIs are listed in a complete form 

and deeply analysed. Here they are reported actions and KPIs strictly related to buildings free-running 

mode, highlighting their peculiarities and focusing on use cases. 

3.2.1 IDF editor 

In addition to main IDF editing actions working on building envelope characteristics, e.g., changing thermal 

resistances, thermal heat capacities and thermal masses, solar gains, some additional bioclimatic and free-

running technologies are included focussing mainly on passive cooling strategies. In particular, PREDYCE 

includes shading and natural ventilation IDF editing actions that allow respectively to prevent heat gains 

and dissipate them via ventilative cooling means. Concerning shadings, several functions are available in 

order to add different kinds of blinds to windows, eventually filtered by orientation, or to change the slat 

angle. A specific schedule name can be associated to shading objects, providing different kinds of control 

strategies. Some basic strategies are included with predefined names inside EnergyPlus software, for 

example based on temperature and solar radiation thresholds. These thresholds are simple values 

associated to specific IDF fields, so they can be modified through generic functions, i.e., 

set_object_params, that require the user to know values position in the IDF. If needed more name-friendly 

functions can be developed under request during next project and development stages to cover these 

kinds of actions. 

predyce.idf_editor.add_blind(idf, blind_data, type='interior', filter_by='', filter_by_orientation=None, sched-

ule=None)  

Add interior or exterior blind to all windows. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• blind_data (dict) – WINDOWMATERIAL:BLIND” JSON data 

• type (str, optional) – Type of blind (interior or exterior), defaults to “interior” 

• filter_by (str, optional) – Filter zone by name. Can be the block name or specific zone name, de-

faults to “” 

• filter_by_orientation (int, optional) – Specify the orientation of the windows to which the blind 

has to be added. Possible values are 0, 45, 90, 135, 180, 225, 270, 315, 360 (the windows orien-

tation in the building are converted to the nearest of these values for simplicity), defaults to 

None 

• schedule (dict, optional) – If specified blinds will follow the given schedule, otherwise they are 

supposed to be always on, defaults to None  
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Example 
add_blind(idf, 
          blind_data={ 
              "Name": "ext_blind", 
              "Slat Width": 0.025, 
              "Slat Separation": 0.01875, 
              "Slat Thickness": 0.001, 
              "Slat Conductivity": 0.9, 
              "Front Side Slat Beam Solar Reflectance": 0.8, 
              "Back Side Slat Beam Solar Reflectance": 0.8, 
              "Front Side Slat Diffuse Solar Reflectance": 0.8, 
              "Back Side Slat Diffuse Solar Reflectance": 0.8, 
              "Slat Beam Visible Transmittance": 0, 
              "Front Side Slat Beam Visible Reflectance": 0.8, 
              "Back Side Slat Beam Visible Reflectance": 0.8, 
              "Front Side Slat Diffuse Visible Reflectance": 0.8, 
              "Back Side Slat Diffuse Visible Reflectance": 0.8, 
              "Blind to Glass Distance": 0.015, 
              "Blind Bottom Opening Multiplier": 0.5 
          }, 
          type="exterior", 
          filter_by="main_block" 
          ) 

 

predyce.idf_editor.set_object_params(idf, obj_str, data=None, **fields) 

Set parameters on IDF objects given a string representing the object. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• obj_str (str) – String representing the object; the typology and the name are separated by a 

comma. For example “material,Timber Flooring” will edit the idfobjects[“MATERIAL”] whose 

name is Timber Flooring; a string like “material” will edit all materials regardless of name. 

• data (dict, optional) – dictionary where each key corresponds to a pararameter to be changed in 

the IDF and each value corresponds to the new value. 

• fields – Same as data parameter but fields are passed as keyword arguments, e.g. 

Conductivity=0.3 which is equivalent to {“Conductivity”: 0.3} for data field. 

Example 
set_object_params(idf, "material,Timber Flooring", data={"Conductivity": 0.3}) 
set_object_params(idf, "material,Timber Flooring", Conductivity=0.3) 

 

Other functions are devoted to handle shading objects (overhangs and fins) and to change windows 

opening factor. 
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predyce.idf_editor.add_overhangs_simple(idf, extension=1, tilt=90, shift=0.04)  

Add simple overhang. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• extension (int, optional) – Extension of the overhang, defaults to 1 

• tilt (int, optional) – Tilt of the overhang, defaults to 90 

• shift (float, optional) – Shift of the overhang, defaults to 0.04  

 

predyce.idf_editor.add_fin_simple(idf, extension=1, shift=0.04)  

Add simple fin. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• extension (int, optional) – Extension of the fin, defaults to 1 

• shift (float, optional) – Shift of the fin from the window edges, defaults to 0.04  

 

predyce.idf_editor.change_opening_factor(idf, value) 

Change opening factor. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• value (float or str) – New opening factor value  

 

Moreover, scheduled natural ventilation objects can be added in the IDF, associating specific schedules 

and ACH (air exchanges for hour) values to each zone. Both ventilation and infiltration ACH can be changed 

in accordance with zone volume or as a fixed value for all thermal zones. 
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predyce.idf_editor.add_scheduled_nat_vent(idf, filter_by='', schedule=None, ach=None, min_ind_temp=None, max
_ind_temp=None, delta_temp=None, params={}) 

Add scheduled natural ventilation to desired zones. 

Calculation method is supposed to be the IDD default one, Flow/zone. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• filter_by (str, optional) – Filter zone by name. Can be the block name or specific zone name, 

defaults to “” 

• schedule (str or dict, optional) – Name of the Schedule:Compact construction object to be 

added in IDF or the Schedule:Compact object in a dictionary format, defaults to None 

• ach (float, optional) – Value of air changes per hour, defaults to None 

• min_ind_temp (float, optional) – Minimum indoor temperature setpoint, defaults to None 

• max_ind_temp (float, optional) – Maximum indoor temperature setpoint, defaults to None 

• delta_temp (float, optional) – Delta temperature for activation, defaults to None 

• params (dict, optional) – Additional scheduled natural ventilation parameters for the 

ZoneVentilation:DesignFlowRate object, defaults to {}  

Other useful functions for free-running analysis are devoted to activate/de-activate HVAC systems, so that 

comparisons with symmetrical building behaviour can be performed (e.g., for fictitious cooling 

computation as described in the following devoted sub-section). 

predyce.idf_editor.deactivate_cooling(idf, cool_sch_name='Cooling SP Sch', cool_avail_name='Cooling Availability S
ch', temp=None) 

Deactivate cooling on already existing HVAC system. 

Parameters 

• idf (class:predyce.IDF_class.IDF) – IDF object 

• cool_sch_name (str, optional) – Name of the cooling setpoint schedule compact which has to be 

replaced, defaults to “Cooling SP Sch” 

• cool_avail_name (str, optional) – Name of the cooling availability schedule compact which has 

to be replaced, defaults to “Cooling Availability Sch” 

• temp (int or float, optional) – New value for maximum outdoor temperature. If None, no 

changes are applied to such parameter, defaults to None  

3.2.2 KPIs 

Main KPIs computed inside PREDYCE are reported in deliverable D3.1. Among them, distribution of hours 

in Adaptive Comfort Model (ACM) categories is one of the most important for free-running analysis: the 

number of hours in thermal comfort (cat. I and II) and the number of hours in discomfort (cat. III or higher) 

can give an initial vision of building free-running potentialities under standard conditions. Categories and 

calculation approaches are in line with EU and international standards and users may require both to 
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calculate them according to current EN 16798-1:2019 (European Committee for Standardization, 2019) or 

previous EN 15251:2007 (European Committee for Standardization, 2007). However, ACM works with 

operative temperatures, which are very complex to be elaborated by monitored data in real demo 

buildings considering the lack of mean radiant temperature (and air velocity) data – that are also 

correlated to the D3.1 mentioned Fanger PMV/PDD comfort model. Consequently, ACM results to be not 

easily applicable to real data and to scenarios as the performance gap devoted one to return behavioural 

differences also in the free-running mode. In order to solve this issue in case of ACM application to real 

data (and to simulation used for comparison) indoor mean air temperature is used instead of operative 

temperature by passing the lack in monitored data concerning globe temperatures – to define mean 

radiant temperatures – and internal air velocities at body level. This choice is motivated by actual 

feasibility but is also supported by specific analyses based on monitored data elaboration in the ENEA 

living lab building – see Section 3.2.3. 

Concerning evaluation of buildings free-running potential, another useful KPI is the n_h_kwh which is 

devoted to compute the number of hours in which heating and cooling systems are on and consuming 

more than given thresholds. At present, COP is here definable as a fixed seasonal number (such 

DesignBuilder interface does for simple HVAC models and in line with many other energy simulation 

software), but it can be in the future integrated with hourly definable functions considering the different 

losses mechanisms, by integrating, for example de ones described in E-DYCE deliverable D3.1.  

adaptive_comfort_model(df, eu_norm='16798-1:2019', alpha=0.8, filter_by_occupancy=0, when={}) 

Compute adaptive comfort model in a standardized format. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – dataframe should contain “Date/Time” column in 

format ‘year/month/day hour:minutes:seconds’, “T_db_o[C]” preferably with a subhourly 

timestep and “T_op_i[C]”. Optional “Occupancy” column accepting only 0/1 values. 

• eu_norm (str, optional) – It can be set to ‘15251:2007’ if old UE norm computation is desired, 

defaults to ‘16798-1:2019’. 

• alpha (float, optional) – With old UE norm ‘15251:2007 alpha is a free parameter in range [0,1), 

defaults to 0.8 

• filter_by_occupancy (int, optional) – It can be set 0 or 1, depending on wether activate 

occupancy filtering on thermal comfort KPIs computation or not, default 0. 

• when (dict, optional) – dictionary with ‘start’ and ‘end’ keys and values in format 

‘year/month/day hour:minutes:seconds’ 

Returns 

Number of hours in each of the 7 comfort categories and POR computed as % of hours outside cat 2 

boundaries. 

Return type 

dict 
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n_h_kwh(df, th_list=[0, 0.6, 1], cop_cool=3, cop_heat=0.3) 

Number of hours HVAC consumption is higher then given thresholds. 

Parameters 

• df (class:pandas.core.frame.DataFrame) – Dataframe which must contain at least cooling and 

heating consumption columns “Q_c[Wh/m2]” and “Q_h[Wh/m2]” plus “Date/Time” column. 

• th_list (list, optional) – List of thresholds to be compared with consumption, defaults to [0,0.6,1] 

• cop_cool (int, optional) – Cop value for cooling system, defaults to 3 

• cop_heat (float, optional) – Cop value for heating system, defaults to 0.3 

Returns 

Dictionary containing No. hours above defined thresholds for heating and cooling. 

Return type 

dict 
 

 

3.2.3 On the relation between air and operative temperature in standard office rooms 

The determination of thermal comfort depends on parameters related to the human body and to the 

physical quantities of the local climate. Relevant studies carried out on the thermal controlled 

environment by Fanger, which led to definition of the Predicted Mean Vote and the Predicted Percentage 

of Dissatisfied, and on microclimate design criteria by Givoni and Olgyai showed the dependence of 

thermal comfort on several physical parameters. Current relevant standards on thermal comfort in free 

floating conditions, however, identifies the operative temperature as the main driving parameter. The 

latter is determined as the average of the air and mean radiant temperatures in a given space, in case of 

compact volume forms it can be approximated as the arithmetic average of the two parameters. In 

calculation tools implementing Adaptive Comfort Models (ACM)its determination is not complex, but it is 

for monitoring in real applications. 

To calculate the operative temperature (Top) it is necessary to determine the mean radiant temperature 

(Tmr) that can be calculated with the following equation: 

𝑇𝑚𝑟  = [(𝑇𝑔 + 273)
4

+ 2.5 ⋅ 108 ⋅ 𝑣𝑎
0.6(𝑇𝑔 − 𝑇𝑎)]

1
4

− 273 

Being: 

Tg globe temperature[°C] 

Ta air temperature [°C] 

va air velocity [m/s] 

Hence such measure may have a relevant impact on cost and room integration, because of space to be 

allocated for the structure on desk or floor stands (the globe is a hollow black painted metal sphere with 

a minimum diameter of 150mm). It is thus relevant to understand whether and when the determination 

of the operative temperature is necessary or when it could be replaced by simpler measurement. The 

mean radiant temperature is critical in case of strong radiant asymmetries, as in buildings with large glazed 

area on in case of heating/cooling radiant systems, but in most cases it might be not. A monitoring 

campaign was carried out in an office room of the ENEA F40 living lab to address this issue in June 2020 

and published in (De Lia et al., 2022). 
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The test was carried in an office room, 3.9m large, 4.5m deep, and 3.1m high. It has a single external west-

oriented façade with a 3.2 m2 window, the transparent area is 2.13 m2 and the frame fraction is 33%. A 

microclimatic station by TESTO was mounted close to the centre of the room, in a way to minimize the 

risk to have the sensor hit by the direct solar rays in late afternoon. The monitoring station acquires air 

relative humidity and CO2 concentration, beside the above-mentioned parameters. The room was 

unoccupied and in free running mode during the test period – see Figure 2 and Figure 3. 

 

Figure 2 Close-up of the ENEA Living Lab lay-out with the position of the monitoring station 

 

Figure 3 View of ENEA Living Lab test room 

The test was carried out for 14 days in June, data were acquired every 10 minutes. The operative 

temperature was calculated starting from measured air temperature and mean radiant temperature, 

derived from the above-mentioned quantities. Next figure presents the time evolution of operative and 

air temperature during the period. 

The results – see also Figure 4 – show that the differences between the two quantities were below 0.2°C 

in 77% of the period, conversely the were above 0.3 and 0.4°C in 4.7% and 0.6 of the readings, 

respectively. No case was registered with temperature difference above 0.5; this means that such 

difference was always within the instrument error (0.5°C for air temperature), as declared by the 

manufactured. 
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Figure 4 Operative and air temperature trend in the test room during the monitoring period 

This finding proves that the air temperature can replace the operative temperature with sufficient 

accuracy in a built environment without relevant thermal radiation sources, or rather in spaces where the 

occupants are not exposed to the latter. This aspect is relevant for a proper monitoring of buildings in 

thermal free-floating conditions without recurring to complex and expansive field sensors. 

 

3.2.4 Fictitious cooling KPI 

Defined the background of the free-running mode, a methodology is defined to evaluate building 

conditions under free-running mode for energy evaluation purposes by translating potential discomfort 

conditions into substitutive energy needs, as if a mechanical system would have been used to turn 

discomfort hours into comfort one. The proposed approach defines fictitious cooling and fictitious heating 

energy needs on the base of simulated (or monitored) thermal discomfort intensities. Such as introduced 

in E-DYCE D1.2, fictitious cooling or heating is based on the definition of a fictitious activation risk indicator 

that, on the base of the discomfort intensity, defines a percentage of “virtual” usage of a hypothetical 

mechanical system fictitiously installed in the building. The approach modified the original suggestions of 

Annex D, ISO TR EN 52018-2:2017 (CEN ISO/TR, 2017). The retrieved fictitious cooling/heating net energy 

needs may be processed in a second elaboration step to retrieve energy consumptions and primary 

energy values by applying fictitious sub-systems COPs and EP conversion factors in line with mechanically 

driven buildings. For the E-DYCE sample simulation platform, the coding functions developed for 

mechanically-driven simulated buildings – see D3.1 and/or current EU and national regulations, e.g., the 

Italian UNI-TS 11300 series – can be applied also for calculating the fictious COPs and the fictitious EPs 

when fictitious net energies are defined.  

Similarly, it is possible to define fictitious ventilation energy needs and consumptions when IAQ levels 

overpass comfort thresholds or to apply the concept to visual comfort although these latter aspects are 

not here detailed.  

Figure 5 shows the computation workflow for fictitious cooling KPI. Differently from other KPIs, it requires 

the run of a parallel simulation simulating the same building (un-equipped with HVAC system) as if the 

cooling system was present and natural ventilation de-activated (windows closed). This surely extends 

simulation time if this KPI is among the ones requested in the input JSON. Results of the two simulations 

are both stored in order to be further compared: if real building model is in thermal comfort (ACM cat. I) 
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in a certain hour its cooling need is 0, while if it is in thermal discomfort (ACM cat. III) its cooling need is 

considered to be the full one of its symmetric buildings with HVAC on. If instead a certain hour falls in 

ACM cat. II, the cooling need is considered to be a linear function of the cooling consumption in the 

symmetric building. The same process can be replicated for fictitious heating computation, considering 

lower ACM categories. At present, the net cooling need is considered, without applying COP. However, it 

can be changed in future updates to both seasonal or more dynamic approach. 

 

Figure 5 Fictitious cooling KPI computation workflow 

 

Here below is reported the part of the PREDYCE technical manual describing the fictitious cooling KPI. 

fict_cool(dataframe_off, dataframe_on, eu_norm='16798-1:2019', alpha=0.8) 

Return fictitious cooling computed as the amount of cooling consumption needed in a building without 

mechanical system in order to reach category I comfort of adaptive comfort model. 

Parameters 

• dataframe_off (class:pandas.core.frame.DataFrame) – dataframe containing at least 

“Date/Time”, “T_op_i[C]”, “T_db_o[C]” columns in order to compute adaptive comfort model 

categories. 

• dataframe_on (class:pandas.core.frame.DataFrame) – dataframe containing at least 

“Date/Time” and “Q_c[kWh/m2]” columns, of the same building with HVAC installad and ACH 

ventilation set to 0. 

• eu_norm (str, optional) – It can be set to ‘15251:2007’ if old UE norm computation is desired, 

defaults to ‘16798-1:2019’. 

• alpha (float, optional) – With old UE norm ‘15251:2007 alpha is a free parameter in range [0,1), 

defaults to 0.8 

Returns 

fictitious cooling total [kWh/m2] 

Return type 

float 
 

Figure 6 shows cumulative distribution functions of simulated cooling needs (both real and fictitious) and 

indoor operative temperatures, for a Torre Pellice demo case (as IDF building model), hypothetically 

located in Casaccia, Rome (concerning TMY EPW file), because of the hotter climate. The example 
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highlights that fictitious cooling is limited with respect to the case with HVAC system on with special 

regards to hours in which medium-to-low cooling loads are expected. This because for those hours the 

free-running behaviour of the building is sufficient to guarantee internal comfort conditions considering 

natural ventilation and adaptive thermal comfort scenarios, differently when internal temperature 

overpass ACM upper categories thresholds, also fictitious cooling will go to full charge since it is not 

possible to guarantee indoor comfort conditions via the considered free-running schemes.  

 

Figure 6 CDFs describing fictitious cooling potentialities in describing cooling needs 

Significance of the fictitious cooling/heating KPI 

An initial series of analyses is here reported to give initial consistency to the significance of the fictitious 

cooling/heating approach. The proposed methodology bases on two initial considerations: i.) it is possible 

to retrieve a correlation between climate/weather conditions and space energy needs in mechanically 

conditioned buildings; ii.) it is possible to retrieve a parallel correlation between climate/weather 

conditions and space thermal discomforts in free-running buildings by analysing the free-floating space 

temperature – see for example Figure 7. Both considerations are well-known and detailed in literature. It 

is, in fact, well-recognized that heating and cooling (with slight limitations for sunny sites) energy needs 

may be linearly correlated with local HDD (heating-degree days) and CDD (cooling-degree days) values. 

The same consideration is also supported by MS energy regulations. For example, in Italy, the heating 

season duration for design and standard energy rating is based on the municipality climate zone which is 

derived from local HDD values – see UNI/TS 11300-1 and DPR 74/2013. Similarly, it is possible, for 

example, to mention the studies on building base-temperature supporting the definition of the 

operational specific-building correlated heating and cooling seasons (CISBE, 2006). Furthermore, direct 

correlations between external temperatures or degree-days/hours (or delta temperatures) are also 

underlined for free-running and natural-driven buildings (Chiesa et al., 2021b; Cook, 1989; Givoni, 1994) 

and are at the base of different approaches to define the local potential of free-running technologies, e.g., 

sunspaces (Chiesa et al., 2017), or passive cooling means (Artmann et al., 2007; Chiesa and Grosso, 2015; 

Chiesa and Zajch, 2020; Santamouris and Asimakopolous, 1996).  
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Figure 7 Correlation between external conditions (temperature) and (a) energy needs, (b) free-running building 

temperatures – daily aggregated values 

(Parallelepiped building 10x10x3.5m, 30% WWR all orientations, Rome-Ciampino TMY, U-valuewall 1.8) 

Given these correlations between climate and building conditions in both modes, it is possible to expect 

that the same building running in mechanical mode and in free-running mode will retrieve respectively 

energy needs and thermal comfort conditions – expressed in term of free-running internal temperatures 

– that can be correlated one with the other. A sample parallelepiped building – shape: 10x10x3.5m, 30% 

WWR (window-to-wall) for all orientation, base orientation angle 0° – was assumed and simulated under 

the same weather in both mechanical and free-running modes. Initial results for Rome-Ciampino climate 

(EnergyPlus TMY3) confirm the initial considerations (Figure 7), while Figure 8 plots internal temperatures 

(free-running mode) Vs energy needs (mechanical mode) showing a clear correlation between results of 

the two modes – daily aggregation: R2 
linear = 0.98; R2

polynomial = 0.99; hourly aggregation: R2 
linear = 0.87; 

R2
polynomial = 0.94. The figure shows that a clear correlation exists between the building simulated under 

mechanical mode and free-running mode, and that it is possible to retrieve by regressions one by the 

other with limited errors, especially at daily aggregated data resolution. For the hourly resolution it can 

be underlined how several hours show no cooling or heating needs and how the same are mainly 

distributed in those hours in which the parallel free-running model is showing temperatures in the heating 

and cooling set point range (20 °C to 26 °C).  

 

Figure 8 Correlations between free-running internal temperatures and energy needs, for (a) daily aggregated 

values and (b) hourly aggregation 

 

3 see also EnergyPlus weather data, available online at: https://energyplus.net/weather (last view 18th Jan 2022) 

https://energyplus.net/weather
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Secondly, changes in building boundary conditions are tested to analyse the initial robustness of the given 

approach by introducing: i.) ventilative cooling (only FR, both cases - indoor/outdoor temperature control 

activation, scheduled ACH 5); ii.) a change in U-value (from 1.8 to 0.2 W/m2; iii.) a change in climate, by 

virtually moving the sample testing building to a different location and varying the TMY (from Rome-

Ciampino to TPM climate); iv.) a change in the scheduling profile (from a residential 24h/7d to an office 

8-18/Mon-Fri) considering occupancy (FR and mechanical models), heating and cooling (mechanical 

model only). Cases i.) is shown in Figure 9 underlining that for both cases, the first in which ventilation is 

added only for the FR model and the second in which ventilation is added to both the FR and the 

mechanical models, very high correlations are retrieved between FR temperatures and net energy needs. 

Similarly, Figure 10 reports results for the variations ii.) and iii.). The figure shows that a very high 

correlation arrives under different U-value conditions and that the same approach is valid also for 

different climatic conditions.  

 

Figure 9 Correlations between free-running internal temperatures and energy needs, for (a) case with ventilative 

cooling on both FR and mechanical modes and (b) case with ventilative cooling activated only for the FR mode – 

daily aggregation 

 

 

Figure 10 Correlations between free-running internal temperatures and energy needs, for (a) case with reduced 

U-value (0.2 W/m2K) and (b) original case run under TPM typical weather conditions – daily aggregation. 

Considering hourly aggregations, similar results are retrieved – see for example the result for case i.)  and 

ii.) in Figure 11. A slight increase in the standard deviation is underlined although the general correlation 

is still very evident also for hourly data aggregations. 
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Figure 11 Correlations between free-running internal temperatures and energy needs, for (a) case with 

ventilative cooling on both FR and mechanical modes and (b) original case with reduced U-value (0.2 W/m2K) – 

daily aggregation 

Finally, the effect of changes in the scheduling profiles are reported in Figures 12(a) and (b) showing for 

hourly values that the correlation is high (R2=0.79) when results are filtered for occupied hours and 

reaches a R2 of 0.95 if data are additionally filtered in an 8 to 17 interval cutting turning-off and -on hours. 

Nevertheless, in cases in which all hours (8760 h) are considered, correlation is influenced by many hours 

in which energy needs are null, while FR temperatures variates (R2=0.44). Considering that thermal 

comfort is generally retrieved for occupied hours, especially in office buildings, the filtered approach is 

coherent with the proposed methodology. Similarly, Figures 12(c) and (d) show the same distribution for 

daily aggregated data. In these latter cases, filtering by working day (but including in daily average all 

hours) the correlation reached a R2=0.98 (c), while all day correlation is characterized by a R2=0.66 due to 

weekends (no energy needs) (d). 

 

Figure 12 Correlations between free-running internal temperatures and energy needs, office scheduled cases, 

considering only occupied hours (hourly aggregation) (a) occupied hours without turning off and on periods (8-

17) (b); only occupied day (daily aggregation 
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Even if additional tests will be performed during next project advancements by applying the verification 

to E-DYCE demo cases and including extra variations in terms of parameters and ranges, initial checks 

show how fictitious KPIs may transpose free-running cases to energy evaluating processes on the base of 

a recognized background.  

 

4 PREDYCE scenarios 

4.1 Sensitivity analysis  

Here is reported an example of sensitivity analysis applied to suggestions of optimal free-running mode 

for buildings during the summer season – see also the dissemination paper prepared for the E-DYCE WP3 

MS-05 (Chiesa et al., 2021a). The proposed example refers to a TPM (Torre Pellice Municipality) residential 

demo case, simulated under local TMY (Typical Meteorological Year) and under Casaccia (Rome) hotter 

climate, in order to give an example of both mountain colder conditions and hotter climate typical of 

middle Italy. Different KPIs (e.g., thermal comfort) are computed in free-running mode (the demo case 

actually is not provided with cooling system). As it can be seen in input JSON file, figure 13, the following 

actions are preliminary executed on the building model: set simulation period to June-September and add 

shade rolls with a base shading control strategy (based on outdoor temperature and solar radiation). The 

impact of different free-running technologies is then evaluated through parametric analysis acting on: 

ACH ventilation scheduled values, external temperature and global solar radiation (GHI) thresholds for 

shade rolls activation and overhang length. The computed KPIs are: adaptive thermal comfort (% hours in 

categories), mean ACM discomfort expressed in POR form (% of hours outside comfort Cat. II boundaries), 

and PMV-PPD model-based POR (% hours with PMV > 0.7, so PPD > 15%, comfort Cat. III EN 16798-

1:2019). 

"scenario": "sensitivity_analysis", 
"building_name": "r0", 
"preliminary_actions": { 
    "change_runperiod": {"start": "01-06", "end": "30-09", "fmt": "%d-%m"}, 
    "set_shading_control": {"name": "1003"}, 
    "set_object_params": { 
        "obj_str": "WindowProperty:ShadingControl,1003", 
        "data": { 
            "Shading Control Type": "OnIfHighOutdoorAirTempAndHighHorizontalSolar", 
            "Schedule Name": ""}}}, 
"actions": { 
    "change_ach": {"ach": [0, 2.5, 5]}, 
    "add_overhangs_simple": {"extension": [ 0.2, 0.4, 0.6, 0.8, 1]}, 
    "set_object_params": { 
        "obj_str": ["WindowProperty:ShadingControl,1003"], 
        "data": [ 
            {"Setpoint": 20, "Setpoint 2": 100}, 
            {"Setpoint": 20, "Setpoint 2": 150}, 
            {...}]}}, 
"outputs": [], 
"kpi": {"pmv_ppd": {"clo": 0.7}, 
    "adaptive_comfort_model": {}, 
    "adaptive_residuals": {}}  

Figure 13 Input JSON file used for this sample application 
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In the following plots generated for post-analysis are reported (so, at present not automatically generated 

inside PREDYCE, but from results contained in data_res.csv). In this example, heatmaps results in figures 

14 and 15 show that in Torre Pellice best strategies are meant to keep house warmer letting more sunlight 

entering at any outdoor temperature, while in Rome increasing ventilation and decreasing outdoor 

temperature threshold have the greatest impact, despite GHI and overhang, and best shading strategies 

are reached activating rolls at low outdoor temperature and GHI (20/22 °C and 100/150 W/m2). 

            

Figure 14 TPM shading control thresholds heatmaps 

 

           

Figure 15 Rome shading control thresholds heatmaps 

Figures 16 and 17 instead allow to give an initial idea of the impact that ventilation ACH has on thermal 

comfort: particularly in Rome, setting an ACH of 2.5 instead of 0, allows to drastically reduce discomfort, 

reducing also the positive impact of an added overhang. In the colder TPM climate instead, increased 

ventilation is unnecessary, and can even result to be disadvantageous in terms of thermal comfort to 

avoid overcooling phenomena. 
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Figures 18 and 19 report instead the ACM distribution plots generated inside PREDYCE for respectively 

TPM (Fig. 18) and Rome (Fig. 19) climates showing both initial model conditions and best retrieved free-

running summer mode. Figures show the ability of the PREDYCE tool in evaluating free-running 

approaches and to suggest design actions (including retrofitting) and potentially design operational 

conditions by also considering free-running technologies, e.g., integrating movable shading systems and 

ventilative cooling to balance solar heat gains. In the colder climate of TPM the sensitivity simulation 

scenario allows to suggest shading activation thresholds and ACH to avoid overcooling effects balancing 

summer building behaviour to reach thermal comfort under free-running mode. Differently, the Rome 

sample application shows how PREDYCE may be adopted to suggest balancing between shading activation 

thresholds and ventilative cooling rates to avoid overheating in a hot climate allowing to reach thermal 

comfort conditions under free-running mode.  

Figure 16 TPM overhang length and ACH impact on thermal discomfort 

Figure 17 Rome overhang length and ACH impact on thermal discomfort 
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Figure 18 TPM adaptive comfort model distribution 

 

Figure 19 Rome adaptive comfort model distribution 

This series of sample applications also show the ability of the proposed dynamic simulation approach in 

helping designers and energy managers to select correct control thresholds to support the optimisation 

of free-running usage during design and technology implementation steps.  

4.2 Performance gap 

The performance gap scenario, in accordance with WP2 outcomes, allows to deepen the behavioural gap 

between standard simulated building conditions and actual behaviour. To obtain meaningful results for 

the comparison, the simulated building model should be calibrated to follow the real monitored trend: 

this can be obtained both through traditional manual methods (e.g., through DesignBuilder or OpenStudio 

interfaces themself) finally generating a modified IDF or exploiting the functionalities of automatic and 

semi-automatic approaches, like another PREDYCE scenario named model verification and described in 

the following section 4.3. Then, input JSON file, described in correlated deliverable D3.1, can be used to 

modify the calibrated model to standard conditions for what concerns e.g., occupancy, setpoints, 

ventilation, and to standard modified conditions, as described in WP2 deliverables. This is obtained 

transforming the preliminary_actions field (listing IDF editing functions to be applied once before 

simulating) into a list of JSONs, considered in the code as a parameter. Moreover, the scenario takes in 

input an EPW file generated from monitored data from weather stations and a CSV file containing indoor 
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environmental monitored data for the considered period. The adopted format of sensor’s naming, 

described in section 4.4, allows to exploit KPIs calculator module also on monitored data and to match 

spatial aggregations on which KPIs are computed to simulated model thermal zones. 

Results of performance gap scenario contain the two CSV files described in deliverable D3.1, so 

data_res.csv and data_res_timeseries.csv, but slightly modified in accordance with scenario peculiarities. 

Particularly, a column called data in data_res.csv is descriptive: sim 𝑥 corresponds to the model setting 𝑥 

described in input JSON, then monitored corresponds to KPIs computed on monitored data, and 

𝛥𝑥 corresponds to KPIs delta computed as monitored results minus building simulated in setting 𝑥 results. 

Timeseries results instead follow the same principle but in columns names. Then results are aggregated 

in a zip folder in order to be sent via REST API to FUSIX platform which acts as E-DYCE middleware. In fact, 

such as sensitivity analysis scenario, also performance gap can be run remotely via a REST API or through 

a dedicated web interface4.  

Figure 20 summarizes performance gap scenario input/output workflow. Together with previously 

described outputs, it could be possible to return also plots both generated inside KPIs computation and 

from post-analysis of building behavioural comparison.  

 

 

Figure 20 Performance gap input/output workflow 

 

Through same credentials used for deliverable D3.1 example, it is possible to remotely execute an 

example of performance gap scenario run via the REST API or directly through the web interface (results 

will be in the Download folder of the browser). Input files and outputs can be found in a shared folder5 

and in the following a detailed example explanation is given. One of TPM demo cases, the municipality 

school, is used as an example: figure 21 shows the school model from which the IDF was exported. The 

 

4 http://130.192.20.228:3200/pg   (Note: some Wi-Fi connections may not support it) 

5 https://www.dropbox.com/sh/zcrl37umjbi8b0p/AACKVlGsjlyWZmlbwnpWZQV3a?dl=0 

http://130.192.20.228:3200/pg
https://www.dropbox.com/sh/zcrl37umjbi8b0p/AACKVlGsjlyWZmlbwnpWZQV3a?dl=0
http://130.192.20.228:3200/pg
https://www.dropbox.com/sh/zcrl37umjbi8b0p/AACKVlGsjlyWZmlbwnpWZQV3a?dl=0
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school is made of four almost equally organized floors, with corridor on the north façade and several 

classrooms and labs on the south; toilets are located at the west end of the corridor, while entrance and 

teacher rooms at the east side. Since the school is a quite complex and big building, separate similar 

models have been used for each floor in order to reduce simulation time. However, particularly for remote 

execution simulation time can be quite long (around half an hour). 

     

Figure 21 TPM school demo case model 

Since there are still few monitored data for energy consumption, performance gap analysis for this 

example is focused on CO2 and indoor air temperature. The simulation period was set from 16/09/2021 

to 31/10/2021, considering school starting date and that in mid-October HVAC system was switched on. 

Figure 22 shows KPIs computed for this example and spatial aggregations considered: activity 202 is linked 

to common circulation areas, while activities 201xx to specific teaching areas (see also Section 4.4). 

Moreover, aggregated results over the whole floor are computed. This is an example of a quite complex 

multi-zone model, in which analyses are performed room-by-room, but it is possible to use the same 

methodology considering the critical zone approach proposed in WP2 outcomes: in this case spatial 

aggregations will be related just to the whole floor/building and to the critical room, chosen through given 

inspection guidelines, which will be identified with a given name (free but structured) as described in 

nomenclature section 4.4. However, since the identification of the critical room is inspection-based, the 

building model has to be created having in mind it and simulation just uses the zone name for KPIs analysis. 

Timeseries results for CO2 and indoor air temperature are saved in data_res_timeseries.csv file, while 

aggregated results for Adaptive Comfort Model and CO2 analysis are saved in data_res.csv file. 

 

"kpi": { 
    "adaptive_comfort_model": {}, 
    "timeseries_t_db_i": {}, 
    "timeseries_co2": {}, 
    "n_co2_aIII": {}, 
    "n_co2_bI": {} 
}, 
"aggregations": { 
    "adaptive_comfort_model": ["act202", "act201", "act201ba", 
                               "act201bb", "act201bc", "act201bd"], 
    "timeseries_t_db_i": ["act202", "act201", "act201ba", 
                          "act201bb", "act201bc", "act201bd"], 
    "timeseries_co2": ["act201", "act201ba", "act201bb", "act201bc", "act201bd"], 
    "n_co2_aIII": ["act201", "act201ba", "act201bb", "act201bc", "act201bd"], 
    "n_co2_bI": ["act201", "act201ba", "act201bb", "act201bc", "act201bd"] 
}  

Figure 22 Input JSON KPIs 

N 

N 
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Figure 23 shows the list of preliminary actions applied to the sample model: the model was exported 

already set with specific conditions for occupancy, ventilation, setpoints (representing a sample standard) 

and consequently the first dictionary is empty; the second dictionary instead represents standard 

modified conditions and contains a small schedule change more aligned with real use (the school is almost 

empty in the afternoon). However, finer schedule assignments will be done for demo cases applications 

in further deliverables (WP5), while the proposed example is only meant to explain the followed 

methodology and feasibility. Additional preliminary actions are automatically performed by the scenario 

script: activate CO2 analysis, align simulated days of the year to real weekdays (setting the first day of the 

year inside the simulation) and change the run period. Moreover, in the inputs folder EPW file generated 

with monitored data from TPM weather station can be found, together with the CSV file of measured 

indoor environmental data (school1_f01.csv). The proposed example is not executed on a calibrated 

model, but analysis on temperatures trend in summertime showed it was already quite well aligned 

without big changes, consequently despite results should not be interpreted as fully meaningful 

considering the real demo case, they still can give an initial idea of performance gap scenario working in 

this demo.  

"preliminary_actions": [{}, {"change_occupancy": {"schedule": {}}}]  

Figure 23 Input JSON preliminary actions 

Focusing on aggregated results as shown in Figure 24 (just as an average on the whole floor), the CSV file 

is composed by five rows named simulated_1 and _2, monitored and delta_1 and _2, corresponding to 

the two settings defined in preliminary actions field in the input JSON file, and columns for each KPI and 

spatial aggregation: so, if the number of hours above CO2 threshold III (1000 ppm), named n_co2_aIII, is 

computed on five different spaces plus the entire floor/model (which is always considered without 

specifying it), six columns will be related to this KPI and identifiable by _space-name. Some results in the 

file are numbers, such as results related to CO2 analysis, while others can be dictionaries, such as hours 

distribution in ACM categories.  

 

 

adaptive_comfort_model n_co2_aIII n_co2_bI data 

{"cat I": 828, "cat II up": 41, "cat III up": 16, "cat over III": 0, "cat II down": 113, "cat III down": 53, "cat under III": 29, "POR": 0.077} 35 721 simulated_1 

{"cat I": 861, "cat II up": 40, "cat III up": 5, "cat over III": 0, "cat II down": 127, "cat III down": 34, "cat under III": 13, "POR": 0.041} 109 818 simulated_2 

{"cat I": 568, "cat II up": 23, "cat III up": 0, "cat over III": 0, "cat II down": 236, "cat III down": 121, "cat under III": 35, "POR": 0.125} 11 849 monitored 

{"cat I": -260, "cat II up": -18, "cat III up": -16, "cat over III": 0, "cat II down": 123, "cat III down": 68, "cat under III": 6, "POR": 0.048} -24 128 delta_1 

{"cat I": -293, "cat II up": -17, "cat III up": -5, "cat over III": 0, "cat II down": 109, "cat III down": 87, "cat under III": 22, "POR": 0.084} -98 31 delta_2 

Figure 24 Example of data_res.csv for performance gap 

 

Concerning timeseries results instead, as shown in Figure 25, indexes are date/time values for the 

considered time period, while columns are KPIs for each spatial aggregation and the five scenario outputs 

(simulated_, monitored and delta_): so, considering hourly CO2 values and the 6 spatial aggregations 

considered in the example, there will be 30 (5x6) columns related to this KPI, constructed as 

simulated_x_timeseries_co2_space-name. 
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simulated_1_timeseries_t_db_i_act202 simulated_1_timeseries_t_db_i_act201 simulated_1_timeseries_t_db_i_act201ba 

16/09/2021 00:00 
   

16/09/2021 01:00 23.67607519 27.20036908 26.8413237 

16/09/2021 02:00 23.50674921 26.9809892 26.62869727 

16/09/2021 03:00 23.36610899 26.78733746 26.43820069 

16/09/2021 04:00 23.20507801 26.58442909 26.23686938 

16/09/2021 05:00 23.03439047 26.38048788 26.03437667 

Figure 25 Example of data_res_timeseries.csv for performance gap 

Figures 26 and 27 show timeseries results for CO2 and indoor air temperature averaged in all floor 

classrooms and in a specific classroom. During last week in October, the profile used for standard 

occupancy schedule includes a holyday period, consequently the CO2 generation for simulation 1 drops 

to 0; simulation 2 instead shows an abnormal peak since ventilation was not changed and set to 0 because 

of the holidays, while occupancy was set to fully functional. Temperature trends seem to align better from 

mid-October, when HVAC system is in reality switched on: this could be due to a consequent more 

standardized use of natural ventilation. 

 

 

Figure 26 Timeseries results averaged on all classrooms 

 

 

Figure 27 Timeseries results in a specific classroom 
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4.3 Model verification 

A semi-automatic calibration process, that can be subjected to future updates and improvements, has 

been developed inside PREDYCE to adjust the building model to measured data, speeding up the manual 

procedures usually adopted for this purpose. The following PREDYCE IDF editing actions are currently 

available to be tried inside this scenario, to try aligning the simulated trend to actual building behavior: 

• Change U-value of walls and roof (acting on thickness of mostly insulated layer); 

• Change U-value and SHGC (Solar Heat Gain Coefficient) of windows; 

• Change internal mass and equipment gains in each thermal zone; 

• Change ACH ventilation and infiltration. 

The calibration process exploits also PREDYCE EPW compiler module, able to generate an EPW from 

monitored weather data. Model verification is possible thanks to PREDYCE ability of computing same KPIs 

on both simulation results and indoor monitored data. Particularly, the adopted procedure is inspired by 

(Claridge and Paulus, 2019) – see also E-DYCE D1.2 – and consists in optimizing a combined error measure 

including both RMSE (Root Mean Square Error) and MBE (Mean Bias Error), see the following equation, 

on a given variable or combination of variables, e.g., indoor dry bulb temperature in free-running 

conditions or on heating/cooling consumption.   

Errortot =  √𝑅𝑀𝑆𝐸2 + 𝑀𝐵𝐸2 

The calibration signature described in (Claridge and Paulus, 2019) is computed according to the following 

equation (taking indoor dry bulb temperature as objective variable), exploiting PREDYCE potentialities. 

Calibration signature =
measured 𝑇db

i − simulated 𝑇db
i

max measured 𝑇db
i ⋅ 100% 

 

 

Figure 28 Example of calibration signatures 
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The different implemented IDF editing actions allow to both shift the curve (e.g., acting on ACH, 

equipment gains), change coefficient and inclination, and to modify amplitude variations (e.g., acting on 

internal mass), such allowing to reach a flat line inside 5% error range, in line with reference suggestions 

– see also ASHRAE Guideline 14-2014 for calibration criteria. Figure 28 shows some initial (before 

calibration) examples of calibration signatures plots on TPM demo cases. 

Which parameters to change and their range (e.g., change walls U-value in range 30% with respect to 

original model value) can be defined considering the knowledge of each demo case, e.g., if windows are 

newly installed and parameters are known they could not be included in the loop. Other actions, still not 

automatized in the process, can also be available (e.g., changing zone area, change window area, change 

windows visible transmission factor) if needed in a particular case. Similarly, also occupancy profiles and 

intensities may be varied, even randomly, but are at present not included in the automatic loop having 

already an internal gain voice. The model verification scenario is at present considered to be semi-

automatic since, to minimize the number of simulations to be performed, it requires to look at the 

calibration signature plot in order to define which parameters to try. Also, after having established a 

parameter range, the user may decide to try expanding it, if for example the found minimum is at some 

extremities and re-execute the scenario. This procedure may be furtherly automatized in the future, but 

the potentiality to test many building parameters simultaneously and automatically editing the model 

already provides an improvement in terms of effort and time with respect to traditional manual 

procedures. 

Here an example of initial model verification scenario applied to one of E-DYCE demo case is reported. It 

concerns a residential demo case located in TPM and covers the period of June 2021. Indoor air 

temperature is taken as reference variable since cooling system is not present in the house. Optimized 

values for opaque envelope U-factor, windows parameters, internal mass (which allows to consider both 

interior furniture and previously not considered envelope effects), ACH from ventilation and infiltration 

and equipment gains are found with previously described methodology, allowing to reduce the gap 

between average simulated and measured temperature (over the same pre-defined zones considered to 

be representative). Figure 29 shows the gap reduction between starting model and optimized, both on 

peaks amplitude and average values. Moreover, figure 30 shows calibration signature of best case, which 

appears flat and inside 5% error boundary with hourly timestep.  

 

Figure 29 Indoor drybulb temperature trend, before and after model verification 
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Figure 30 Calibration signature and data comparison at the end of model verification 

Specific descriptions about the application of PREDYCE in demos are included in related deliverables from 

WP5. 

4.4 Sensor’s nomenclature discussion 

Each PREDYCE scenario involving comparisons between monitored and simulated data requires a correct 

association among sensors located in the building and model thermal zones, such that spatial aggregations 

for KPIs analysis correspond. Consequently, the nomenclature schema in figure 31 has been proposed. 

The naming part preceding the sensor MAC address follows the IDF models naming structure made of 

building name, block name and thermal zone name, so same names must be used both inside the building 

model (when initially creating it through an interface) and on sensors ID. It was proposed to follow a code 

structure for the names, but for the tool working it is enough to guarantee the correspondence. This 

coherence allows a strict spatial correspondence, making it possible to aggregate at both building or block 

level. Moreover, at the end of the naming structure must be included the name of the measured variable 

(usually corresponding to different transmission channels inside the same sensor). The variable name is 

then used inside each KPI to recognize which CSV columns include in the computation. 

 

Figure 31 Sensor’s nomenclature scheme 

Since the nomenclature schema refers to IDF fixed space nomenclature structure, it can work both in case 

of multi-zones or mono-zone models. The only difference is that in case of monozonal analysis block name 

and thermal zone name is the same since all thermal zones collapse into one.  
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5 Conclusions and Outlook 

Contents of this report are supporting T3.2 results that also include the possibility to run sensitivity 

analyses and the integration of free-running devoted IDF actions and KPIs into the sample dynamic 

simulation platform described in D3.1. During next project steps the above-described scenarios and are 

expected to be tested on project demo cases supporting potential integration and upgrading actions to 

solve challenges and adapt initial actions to specific demo requests – see next WP4 and WP5 deliverables. 

Specific publications are also expected to be developed during next months to disseminate initial results 

in addition to the on mentioned in D3.1, which is devoted to initial descripting the proposed dynamic 

simulation platform. Currently, the ‘DYCE’ version of PREDYCE is not conceived to support real-time 

suggestions or forecasting, but specific sensitivity analyses may be adopted to suggest control thresholds 

or specific technologies – e.g., Free-running ones – by analysing their impacts on expected energy and 

comfort results. Additionally, the introduced fictitious cooling/heating approach, able to be adapted to 

different indicators, e.g., IAQ indices, represents a potential calculation approach to correlate comfort 

and discomfort conditions in free-running buildings with energy needs (fictitious ones) to eventually 

compare (and label) traditional buildings without losing their free-running mitigation potential in respect 

to mechanically controlled spaces. Demo implications will be, although, analysed during next project 

steps.  



893945 – E-DYCE - H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-EE-2019                                                      Dissemination level: PU 

Page 34 of 35 

6 Bibliography 

Artmann, N., Manz, H., Heiselberg, P., 2007. Climatic potential for passive cooling of buildings by night-
time ventilation in Europe. Applied Energy 84, 187–201. 
https://doi.org/10.1016/j.apenergy.2006.05.004 

CEN ISO/TR, 2017. Energy performance of buildings - Indicators for partial EPB requirements related to 
thermal energy balance and fabric features - Part 2: Explanation and justification of ISO 52018-1 
(ISO/TR 52018-2:2017). 

Chiesa, G., Fasano, F., Grasso, P., 2021a. A New Tool for Building Energy Optimization: First Round of 
Successful Dynamic Model Simulations. Energies 14, 6429. https://doi.org/10.3390/en14196429 

Chiesa, G., Grosso, M., 2015. Geo-climatic applicability of natural ventilative cooling in the Mediterranean 
area. Energy and Buildings 107, 376–391. https://doi.org/10.1016/j.enbuild.2015.08.043 

Chiesa, G., Heiselberg, P.K., Kolokotroni, M., 2021b. Innovations in Ventilative Cooling. Springer 
International Publishing, Cham. 

Chiesa, G., Simonetti, M., Ballada, G., 2017. Potential of attached sunspaces in winter season comparing 
different technological choices in Central and Southern Europe. Energy and Buildings 138, 377–
395. https://doi.org/10.1016/j.enbuild.2016.12.067 

Chiesa, G., Zajch, A., 2020. Contrasting climate-based approaches and building simulations for the 
investigation of Earth-to-air heat exchanger (EAHE) cooling sensitivity to building dimensions and 
future climate scenarios in North America. Energy and Buildings 227, 110410. 
https://doi.org/10.1016/j.enbuild.2020.110410 

CISBE, 2006. Degree-days: Theory and application (No. TM41: 2006). The Chartered Institution of Building 
Services Engineers, London. 

Claridge, D., Paulus, M., 2019. Building simulation of practical operational optimisation, in: Hensen, J., 
Lamberts, R. (Eds.), Building Performance Simulation for Design and Operation. Routledge, 
London ; New York, pp. 399–453. 

Cook, J. (Ed.), 1989. Passive Cooling. MIT press, Cambridge. 

De Lia, F., Schioppo, R., Lo Presti, R., Pizzuti, S., Romano, S., Tundo, A., Zangheri, P., Zini, P., Zinzi, M., 2022. 
Implementazione delle logiche di  gestione per gli smart building di seconda generazione (No. 
RdS/PTR(2021)/008, 2022). ENEA, Rome. 

EDYCE, 2021. D1.2 Operational dynamic Energy Perfomance Certificate (EPC) specifications (Project report 
No. D1.2). PoliTO. 

EN ISO, 2005. Ergonomics of the thermal environment - Analytical determination and interpretation of 
thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria 
(ISO 7730:2005). 

European Committee for Standardization, 2019. EN 16798-1:2019 - Energy performance of buildings - Part 
1: Indoor environmental input parameters for design and assessment of energy performance of 
buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels. 



893945 – E-DYCE - H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-EE-2019                                                      Dissemination level: PU 

Page 35 of 35 

European Committee for Standardization, 2007. EN 15251:2007 - Indoor environmental input parameters 
for design and assessment of energy performance of buildings addressing indoor air quality, 
thermal environment, lighting and acoustics. Brussels. 

Ghiaus, C., 2003. Free-running building temperature and HVAC climatic suitability. Energy and Buildings 
35, 405–411. https://doi.org/10.1016/S0378-7788(02)00110-X 

Givoni, B., 1994. Passive and low energy cooling of buildings. Van Nostrand Reinhold, New York. 

Liggett, R., Milne, M., 2017. Climate Consultant 6.0. UCLA Energy Design Tools Group. 

Santamouris, M., Asimakopolous, D. (Eds.), 1996. Passive Cooling of Buildings. James and James, London. 

 


